Abstract
A highly sensitive tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+) electrogenerated chemiluminescence (ECL) sensor based on a graphene-titania-Nafion composite film has been prepared in a simple one-step manner. In the present work, a highly concentrated 0.1 M Ru(bpy)32+ solution was mixed with an as-prepared graphene-titania-Nafion composite solution (1:20, v/v), and then a small aliquot (2 µL) of the resulting mixture solution was cast on a glassy carbon electrode surface. This one-step process for the construction of an ECL sensor shortens the fabrication time and leads to reproducible ECL signals. Due to the synergistic effect of conductive graphene and mesoporous sol-gel derived titania-Nafion composite, the present ECL sensor leads to a highly sensitive detection of tripropylamine from 1.0 × 10−8 M to 2.0 × 10−3 M with a detection limit of 0.8 nM (S/N = 3), which is lower in comparison to that of the ECL sensor based on the corresponding ECL sensor based on the titania-Nafion composite containing carbon nanotube. The present ECL sensor also shows a good response for nicotinamide adenine dinucleotide hydrogen (NADH) from 1.0 × 10−6 M to 1.0 × 10−3 M with a detection limit of 0.4 µM (S/N = 3). Thus, the present ECL sensor can offer potential benefits in the development of dehydrogenase-based biosensors.
Original language | English |
---|---|
Article number | 3064 |
Journal | Sensors |
Volume | 22 |
Issue number | 8 |
DOIs | |
Publication status | Published - 2022 Apr 1 |
Bibliographical note
Funding Information:Financial support for this work has been provided by Basic Science Research Program through the National Research Foundation of Korea (NRF-2021R1F1A1062310) funded by the Ministry of Education, Science and Technology.
Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
All Science Journal Classification (ASJC) codes
- Analytical Chemistry
- Information Systems
- Atomic and Molecular Physics, and Optics
- Biochemistry
- Instrumentation
- Electrical and Electronic Engineering