Abstract
Recent studies made great progress in video matting by extending the success of trimap-based image matting to the video domain. In this paper, we push this task toward a more practical setting and propose One-Trimap Video Matting network (OTVM) that performs video matting robustly using only one user-annotated trimap. A key of OTVM is the joint modeling of trimap propagation and alpha prediction. Starting from baseline trimap propagation and alpha prediction networks, our OTVM combines the two networks with an alpha-trimap refinement module to facilitate information flow. We also present an end-to-end training strategy to take full advantage of the joint model. Our joint modeling greatly improves the temporal stability of trimap propagation compared to the previous decoupled methods. We evaluate our model on two latest video matting benchmarks, Deep Video Matting and VideoMatting108, and outperform state-of-the-art by significant margins (MSE improvements of 56.4% and 56.7%, respectively). The source code and model are available online: https://github.com/Hongje/OTVM.
Original language | English |
---|---|
Title of host publication | Computer Vision – ECCV 2022 - 17th European Conference, Proceedings |
Editors | Shai Avidan, Gabriel Brostow, Moustapha Cissé, Giovanni Maria Farinella, Tal Hassner |
Publisher | Springer Science and Business Media Deutschland GmbH |
Pages | 430-448 |
Number of pages | 19 |
ISBN (Print) | 9783031198175 |
DOIs | |
Publication status | Published - 2022 |
Event | 17th European Conference on Computer Vision, ECCV 2022 - Tel Aviv, Israel Duration: 2022 Oct 23 → 2022 Oct 27 |
Publication series
Name | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Volume | 13689 LNCS |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Conference
Conference | 17th European Conference on Computer Vision, ECCV 2022 |
---|---|
Country/Territory | Israel |
City | Tel Aviv |
Period | 22/10/23 → 22/10/27 |
Bibliographical note
Funding Information:Acknowledgements. This research was supported in part by the Yonsei Signature Research Cluster Program of 2022 (2022-22-0002). This research was also supported in part by the KIST Institutional Program (Project No. 2E31051-21-204).
Publisher Copyright:
© 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
All Science Journal Classification (ASJC) codes
- Theoretical Computer Science
- Computer Science(all)