Abstract
We propose the onion-peel networks for video completion. Given a set of reference images and a target image with holes, our network fills the hole by referring the contents in the reference images. Our onion-peel network progressively fills the hole from the hole boundary enabling it to exploit richer contextual information for the missing regions every step. Given a sufficient number of recurrences, even a large hole can be inpainted successfully. To attend to the missing information visible in the reference images, we propose an asymmetric attention block that computes similarities between the hole boundary pixels in the target and the non-hole pixels in the references in a non-local manner. With our attention block, our network can have an unlimited spatial-temporal window size and fill the holes with globally coherent contents. In addition, our framework is applicable to the image completion guided by the reference images without any modification, which is difficult to do with the previous methods. We validate that our method produces visually pleasing image and video inpainting results in realistic test cases.
Original language | English |
---|---|
Title of host publication | Proceedings - 2019 International Conference on Computer Vision, ICCV 2019 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 4402-4411 |
Number of pages | 10 |
ISBN (Electronic) | 9781728148038 |
DOIs | |
Publication status | Published - 2019 Oct |
Event | 17th IEEE/CVF International Conference on Computer Vision, ICCV 2019 - Seoul, Korea, Republic of Duration: 2019 Oct 27 → 2019 Nov 2 |
Publication series
Name | Proceedings of the IEEE International Conference on Computer Vision |
---|---|
Volume | 2019-October |
ISSN (Print) | 1550-5499 |
Conference
Conference | 17th IEEE/CVF International Conference on Computer Vision, ICCV 2019 |
---|---|
Country/Territory | Korea, Republic of |
City | Seoul |
Period | 19/10/27 → 19/11/2 |
Bibliographical note
Funding Information:Acknowledgment. This work was supported by the ICT R&D program of MSIT/IITP (2014-0-00059) and the Technology Innovation Program (10073129) funded By the Ministry of Trade, industry & Energy (MOTIE, Korea).
Publisher Copyright:
© 2019 IEEE.
All Science Journal Classification (ASJC) codes
- Software
- Computer Vision and Pattern Recognition