Onion-peel networks for deep video completion

Seoung Wug Oh, Sungho Lee, Joon Young Lee, Seon Joo Kim

Research output: Chapter in Book/Report/Conference proceedingConference contribution

52 Citations (Scopus)

Abstract

We propose the onion-peel networks for video completion. Given a set of reference images and a target image with holes, our network fills the hole by referring the contents in the reference images. Our onion-peel network progressively fills the hole from the hole boundary enabling it to exploit richer contextual information for the missing regions every step. Given a sufficient number of recurrences, even a large hole can be inpainted successfully. To attend to the missing information visible in the reference images, we propose an asymmetric attention block that computes similarities between the hole boundary pixels in the target and the non-hole pixels in the references in a non-local manner. With our attention block, our network can have an unlimited spatial-temporal window size and fill the holes with globally coherent contents. In addition, our framework is applicable to the image completion guided by the reference images without any modification, which is difficult to do with the previous methods. We validate that our method produces visually pleasing image and video inpainting results in realistic test cases.

Original languageEnglish
Title of host publicationProceedings - 2019 International Conference on Computer Vision, ICCV 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4402-4411
Number of pages10
ISBN (Electronic)9781728148038
DOIs
Publication statusPublished - 2019 Oct
Event17th IEEE/CVF International Conference on Computer Vision, ICCV 2019 - Seoul, Korea, Republic of
Duration: 2019 Oct 272019 Nov 2

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
Volume2019-October
ISSN (Print)1550-5499

Conference

Conference17th IEEE/CVF International Conference on Computer Vision, ICCV 2019
Country/TerritoryKorea, Republic of
CitySeoul
Period19/10/2719/11/2

Bibliographical note

Funding Information:
Acknowledgment. This work was supported by the ICT R&D program of MSIT/IITP (2014-0-00059) and the Technology Innovation Program (10073129) funded By the Ministry of Trade, industry & Energy (MOTIE, Korea).

Publisher Copyright:
© 2019 IEEE.

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Onion-peel networks for deep video completion'. Together they form a unique fingerprint.

Cite this