Online multi-person tracking via robust collaborative model

Mohamed A. Naiel, M. Omair Ahmad, M. N.S. Swamy, Yi Wu, Ming Hsuan Yang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Citations (Scopus)

Abstract

The past decade has witnessed significant progress in object detection and tracking in videos. In this paper, we present a model for collaboration between a pre-trained object detector and multiple single object trackers in the particle filter tracking framework. For each frame, we construct an association between the trackers and the detections, and when a tracker is successfully associated to a detection, we treat this detection as the key-sample for this tracker. We present a dual motion model that incorporates the associated detections with the object dynamics. Then, a likelihood function provides different weights for the propagated and the newly created particles, reducing the effect of false positives and missed detections in the tracking process. In addition, we use generative and discriminative appearance models to maximize the appearance variation among the targets. The performance of the proposed algorithm compares favorably with that of the state-of-the-art approaches on three public sequences.

Original languageEnglish
Title of host publication2014 IEEE International Conference on Image Processing, ICIP 2014
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages431-435
Number of pages5
ISBN (Electronic)9781479957514
DOIs
Publication statusPublished - 2014 Jan 28

Publication series

Name2014 IEEE International Conference on Image Processing, ICIP 2014

Bibliographical note

Publisher Copyright:
© 2014 IEEE.

All Science Journal Classification (ASJC) codes

  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Online multi-person tracking via robust collaborative model'. Together they form a unique fingerprint.

Cite this