Abstract
In this paper, we focus on addressing the open-set face identification problem on a few-shot gallery by finetuning. The problem assumes a realistic scenario for face identification, where only a small number of face images is given for enrollment and any unknown identity must be rejected during identification. We observe that face recognition models pretrained on a large dataset and naively fine-tuned models perform poorly for this task. Motivated by this issue, we propose an effective fine-tuning scheme with classifier weight imprinting and exclusive BatchNorm layer tuning. For further improvement of rejection accuracy on unknown identities, we propose a novel matcher called Neighborhood Aware Cosine (NAC) that computes similarity based on neighborhood information. We validate the effectiveness of the proposed schemes thoroughly on large-scale face benchmarks across different convolutional neural network architectures. The source code for this project is available at: https://github.com/1ho0jin1/OSFI-by-FineTuning
Original language | English |
---|---|
Title of host publication | 2022 26th International Conference on Pattern Recognition, ICPR 2022 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 1026-1032 |
Number of pages | 7 |
ISBN (Electronic) | 9781665490627 |
DOIs | |
Publication status | Published - 2022 |
Event | 26th International Conference on Pattern Recognition, ICPR 2022 - Montreal, Canada Duration: 2022 Aug 21 → 2022 Aug 25 |
Publication series
Name | Proceedings - International Conference on Pattern Recognition |
---|---|
Volume | 2022-August |
ISSN (Print) | 1051-4651 |
Conference
Conference | 26th International Conference on Pattern Recognition, ICPR 2022 |
---|---|
Country/Territory | Canada |
City | Montreal |
Period | 22/8/21 → 22/8/25 |
Bibliographical note
Funding Information:In this work we showed that combining weight-imprinted classifier and BatchNorm-only tuning of the encoder effectively improves the encoder’s OSFI performance without suffering from overfitting. We further facilitated the performance by our novel NAC matcher instead of the commonly used cosine similarity. Future works will explore extending this idea to the open-set few-shot recognition of generic images. Acknowledgements: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NO. NRF-2022R1A2C1010710)
Publisher Copyright:
© 2022 IEEE.
All Science Journal Classification (ASJC) codes
- Computer Vision and Pattern Recognition