TY - GEN
T1 - Optimal design of a mechanically decoupled six-axis force/torque sensor based on the principal cross coupling minimization
AU - Kang, Min Kyung
AU - Lee, Soobum
AU - Kim, Jung Hoon
N1 - Copyright:
Copyright 2014 Elsevier B.V., All rights reserved.
PY - 2014
Y1 - 2014
N2 - This paper proposes design optimization of a mechanically decoupled six-axis F/T sensor. In order to indicate the biggest cross coupling error of a Maltese cross type F/T six-axis sensor, principal error is proposed in this paper. Locations of twenty-four strain gages are determined and four design variables are selected to solve optimization problem. The average of principal couplings and output strain levels are chosen as the objective function and the constraints respectively. An effective optimization framework is suggested, which utilizes interaction between FEM software ANSYS and MATLAB by using morphing technique. As a result of optimization, the biggest coupling error is reduced from about 35% to 2.5%, which is satisfactory for use of mechanically decoupled six-axis F/T sensors. Experimental verification is conducted and it is shown that there is maximum 5.1 % difference in strain outputs of numerical and experimental results, which verifies the validity of suggested FE model. The design formulation and framework proposed in this study are expected to promote researches on multi-axis F/T sensors and their commercialization in various industries.
AB - This paper proposes design optimization of a mechanically decoupled six-axis F/T sensor. In order to indicate the biggest cross coupling error of a Maltese cross type F/T six-axis sensor, principal error is proposed in this paper. Locations of twenty-four strain gages are determined and four design variables are selected to solve optimization problem. The average of principal couplings and output strain levels are chosen as the objective function and the constraints respectively. An effective optimization framework is suggested, which utilizes interaction between FEM software ANSYS and MATLAB by using morphing technique. As a result of optimization, the biggest coupling error is reduced from about 35% to 2.5%, which is satisfactory for use of mechanically decoupled six-axis F/T sensors. Experimental verification is conducted and it is shown that there is maximum 5.1 % difference in strain outputs of numerical and experimental results, which verifies the validity of suggested FE model. The design formulation and framework proposed in this study are expected to promote researches on multi-axis F/T sensors and their commercialization in various industries.
UR - http://www.scopus.com/inward/record.url?scp=84902177386&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84902177386&partnerID=8YFLogxK
U2 - 10.1117/12.2044744
DO - 10.1117/12.2044744
M3 - Conference contribution
AN - SCOPUS:84902177386
SN - 9780819499875
T3 - Proceedings of SPIE - The International Society for Optical Engineering
BT - Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2014
PB - SPIE
T2 - Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2014
Y2 - 10 March 2014 through 13 March 2014
ER -