Optimal error estimates for the pseudostress formulation of the Navier–Stokes equations

Dongho Kim, Eun Jae Park, Boyoon Seo

Research output: Contribution to journalArticle

Abstract

In this paper, we prove optimal a priori error estimates for the pseudostress-velocity mixed finite element formulation of the incompressible Navier–Stokes equations, thus improve the result of Cai et al. (SINUM 2010). This is achieved by applying Petrov–Galerkin type Brezzi–Rappaz–Raviart theory.

Original languageEnglish
Pages (from-to)24-30
Number of pages7
JournalApplied Mathematics Letters
Volume78
DOIs
Publication statusPublished - 2018 Apr 1

Fingerprint

Incompressible Navier-Stokes
Petrov-Galerkin
A Priori Error Estimates
Optimal Error Estimates
Type Theory
Mixed Finite Elements
Navier-Stokes Equations
Formulation

All Science Journal Classification (ASJC) codes

  • Applied Mathematics

Cite this

@article{f7577117afda4b1c8bc5fc8bfff4c842,
title = "Optimal error estimates for the pseudostress formulation of the Navier–Stokes equations",
abstract = "In this paper, we prove optimal a priori error estimates for the pseudostress-velocity mixed finite element formulation of the incompressible Navier–Stokes equations, thus improve the result of Cai et al. (SINUM 2010). This is achieved by applying Petrov–Galerkin type Brezzi–Rappaz–Raviart theory.",
author = "Dongho Kim and Park, {Eun Jae} and Boyoon Seo",
year = "2018",
month = "4",
day = "1",
doi = "10.1016/j.aml.2017.10.017",
language = "English",
volume = "78",
pages = "24--30",
journal = "Applied Mathematics Letters",
issn = "0893-9659",
publisher = "Elsevier Limited",

}

Optimal error estimates for the pseudostress formulation of the Navier–Stokes equations. / Kim, Dongho; Park, Eun Jae; Seo, Boyoon.

In: Applied Mathematics Letters, Vol. 78, 01.04.2018, p. 24-30.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Optimal error estimates for the pseudostress formulation of the Navier–Stokes equations

AU - Kim, Dongho

AU - Park, Eun Jae

AU - Seo, Boyoon

PY - 2018/4/1

Y1 - 2018/4/1

N2 - In this paper, we prove optimal a priori error estimates for the pseudostress-velocity mixed finite element formulation of the incompressible Navier–Stokes equations, thus improve the result of Cai et al. (SINUM 2010). This is achieved by applying Petrov–Galerkin type Brezzi–Rappaz–Raviart theory.

AB - In this paper, we prove optimal a priori error estimates for the pseudostress-velocity mixed finite element formulation of the incompressible Navier–Stokes equations, thus improve the result of Cai et al. (SINUM 2010). This is achieved by applying Petrov–Galerkin type Brezzi–Rappaz–Raviart theory.

UR - http://www.scopus.com/inward/record.url?scp=85034734508&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85034734508&partnerID=8YFLogxK

U2 - 10.1016/j.aml.2017.10.017

DO - 10.1016/j.aml.2017.10.017

M3 - Article

AN - SCOPUS:85034734508

VL - 78

SP - 24

EP - 30

JO - Applied Mathematics Letters

JF - Applied Mathematics Letters

SN - 0893-9659

ER -