Abstract
This paper considers the optimal control of polytopic, discrete-time linear parameter varying (LPV) systems with a guaranteed ℓ2 to ℓ∞ gain. Additionally, to guarantee robust stability of the closed-loop system under parameter variations, H∞ performance criterion is also considered as well. Controllers with a guaranteed ℓ2 to ℓ∞ gain and a guaranteed H∞ performance (ℓ2 to ℓ2 gain) are a special family of mixed H2=H∞ controllers. Normally, H2 controllers are obtained by considering a quadratic cost function that balances the output performance with the control input needed to achieve that performance. However, to obtain an optimal controller with a guaranteed ℓ2 to ℓ∞ gain (closely related to the physical performance constraint), the cost function used in the H2 control synthesis minimizes the control input subject to maximal singular-value performance constraints on the output. This problem can be efficiently solved by a convex optimization with linear matrix inequality (LMI) constraints. The main contribution of this paper is the characterization of the control synthesis LMIs used to obtain an LPV controller with a guaranteed ℓ2 to ℓ∞ gain and >H∞ performance. A numerical example is presented to demonstrate the effectiveness of the convex optimization.
Original language | English |
---|---|
Pages (from-to) | 148-162 |
Number of pages | 15 |
Journal | International Journal of Control, Automation and Systems |
Volume | 14 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2016 Feb 1 |
Bibliographical note
Publisher Copyright:© 2016, Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag Berlin Heidelberg.
All Science Journal Classification (ASJC) codes
- Control and Systems Engineering
- Computer Science Applications