Opto-mechanical performances of slewing mirror space telescope for GRB detection

Ki Beom Ahn, Soomin Jeong, Sug Whan Kim, Jiwoo Nam, Pisin Chen, Hyeunseok Choi, Yeon Ju Choi, Bruce Grossan, Indra Herman, Ming Huey A. Huang, Aera Jung, Jieun Kim, Yewon Kim, Jik Lee, Heuijin Lim, Eric Linder, Tsung Che Liu, Kyoungwook Min, Gowoon Na, Koo Hyun NamMichel I. Panasyuk, George Smoot, Young D. Suh, Sergey Svertilov, Nikolay Vedenkin, Ivan Yashin, Myungheh Cho, Il H. Park

Research output: Chapter in Book/Report/Conference proceedingConference contribution


The UFFO (Ultra-Fast Flash Observatory) Pathfinder is a space instrument onboard the Lomonosov satellite scheduled to be launched in November 2011. It is designed for extremely fast observation of optical counterparts of Gamma Ray Bursts (GRBs). It consists of two subsystems; i) UBAT (UFFO Burst Alert & Trigger Telescope) and ii) SMT (Slewing Mirror Telescope). This study is concerned with SMT opto-mechanical subsystem design and optical performance test. SMT is a F/11.4 Ritchey-Chretien type telescope benefited from compact design with a short optical tube assembly for the given focal length of 1,140 mm. SMT is designed to operate over a wide range of wavelength between 200 nm and 650 nm and has 17 arcmin FOV (Field of View), providing 4 arcsec in detector pixel resolution. The main detector is 256 x 256 ICCD (Intensified Charge-Coupled Device) of 22.2μm in pixel size. This SMT design offers good imaging performance including 0.77 in MTF at Nyquist frequency of 22.52 /mm and 2.7 μm in RMS spot radius. The primary (M1) and secondary (M2) mirror are hyperbolic surfaces and were manufactured within 1/50 waves (He-Ne, 632.8nm) in RMS surface error. After completion of the initial integration, the SMT opto-mechanical subsystem reached to the system wavefront error better than 1/10 waves in room temperature. We then tested the opto-mechanical performances under thermal cycling and vibration. In this study, we report the SMT subsystem design solution and integration together with thermal and vibration test results.

Original languageEnglish
Title of host publicationOptical Design and Engineering IV
Publication statusPublished - 2011
EventOptical Design and Engineering IV - Marseille, France
Duration: 2011 Sep 52011 Sep 8

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
ISSN (Print)0277-786X


OtherOptical Design and Engineering IV

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering


Dive into the research topics of 'Opto-mechanical performances of slewing mirror space telescope for GRB detection'. Together they form a unique fingerprint.

Cite this