Osteoconductive hybrid hyaluronic acid hydrogel patch for effective bone formation

Soojeong Choi, Jong Seung Lee, Jisoo Shin, Min Suk Lee, Donyoung Kang, Nathaniel S. Hwang, Hyungsuk Lee, Hee Seok Yang, Seung Woo Cho

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

Bio-inspired adhesive hydrogels have been applied to cell and drug delivery systems to address various tissue defects and disorders. However, adhesive hydrogels functionalized with phenolic moieties often lack osteoconductive capacity and mechanical properties for bone regeneration. In this study, we utilized the versatile chemical interactions of phenolic moieties to overcome such limitations in bone tissue engineering efforts. Highly osteoconductive hybrid hydrogel patches were fabricated by incorporating inorganic minerals, hydroxyapatite (HAP), or whitlockite (WKT), into pyrogallol-conjugated hyaluronic acid (HA-PG). The hybrid HA-PG patches exhibited improved mechanical strength and reinforced structural/physical properties owing to additional intermolecular complexation between oxidized PG moieties and ions released from inorganic particles. The sustained release of bone morphogenetic protein-2 (BMP-2) from hybrid patches was prolonged by combination of the inherent nucleophilic affinity of oxidized PG and electrostatic interactions between inorganic particles and BMP-2. With increased osteoconductivity, hybrid patches with HAP or WKT enhanced the osteogenic differentiation of human stem cells while also promoting new bone formation in a critical-sized calvarial defect. Our study demonstrates a translational potential of phenolic adhesive hydrogels engineered with inorganic minerals for orthopedic applications.

Original languageEnglish
Pages (from-to)571-583
Number of pages13
JournalJournal of Controlled Release
Volume327
DOIs
Publication statusPublished - 2020 Nov 10

Bibliographical note

Funding Information:
This work was supported by a grant ( 2018M3A9H1021382 ) from the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (MSIT), Republic of Korea . This work was also supported by Institute for Basic Science, Republic of Korea ( IBS-R026-D1 ).

Funding Information:
This work was supported by a grant (2018M3A9H1021382) from the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (MSIT), Republic of Korea. This work was also supported by Institute for Basic Science, Republic of Korea (IBS-R026-D1).

Publisher Copyright:
© 2020 Elsevier B.V.

All Science Journal Classification (ASJC) codes

  • Pharmaceutical Science

Fingerprint Dive into the research topics of 'Osteoconductive hybrid hyaluronic acid hydrogel patch for effective bone formation'. Together they form a unique fingerprint.

Cite this