Parallel Construction of Simultaneous Deterministic Finite Automata on Shared-Memory Multicores

Minyoung Jung, Jinwoo Park, Johann Blieberger, Bernd Burgstaller

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)

Abstract

String pattern matching with finite automata (FAs) is a well-established method across many areas in computer science. Until now, data dependencies inherent in the pattern matching algorithm have hampered effective parallelization. To overcome the dependency-constraint between subsequent matching steps, simultaneous deterministic finite automata (SFAs) have been recently introduced. Although an SFA facilitates parallel FA matching, SFA construction itself is limited by the exponential state-growth problem, which makes sequential SFA construction intractable for all but the smallest problem sizes.In this paper, we propose several optimizations to leverage parallelism, improve cache and memory utilization and greatly reduce the processing steps required to construct an SFA. We introduce fingerprints and hashing for efficient comparisons of SFA states. Kernels of x86 SIMD-instructions facilitate cache-locality and leverage data-parallelism with the construction of SFA states. Our parallelization for shared-memory multicores employs lock-free synchronization to minimize cache-coherence overhead. Our dynamic work-partitioning scheme employs work-stealing with thread-local work-queues. The structural properties of FAs allow efficient compression of SFA states. Our construction algorithm dynamically switches to in-memory compression of SFA states for problem sizes which approach the main memory size limit of a given system.We evaluate our approach with patterns from the PROSITE protein database. We achieve speedups of up to 312x on a 64-core AMD system and 193x on a 44-core (88 hyperthreads) Intel system. Our SFA construction algorithm shows scalability on both evaluation platforms.

Original languageEnglish
Title of host publicationProceedings - 46th International Conference on Parallel Processing, ICPP 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages271-281
Number of pages11
ISBN (Electronic)9781538610428
DOIs
Publication statusPublished - 2017 Sept 1
Event46th International Conference on Parallel Processing, ICPP 2017 - Bristol, United Kingdom
Duration: 2017 Aug 142017 Aug 17

Publication series

NameProceedings of the International Conference on Parallel Processing
ISSN (Print)0190-3918

Other

Other46th International Conference on Parallel Processing, ICPP 2017
Country/TerritoryUnited Kingdom
CityBristol
Period17/8/1417/8/17

Bibliographical note

Funding Information:
This research was supported by the Austrian Science Fund (FWF) project I 1035N23, and by the Next-Generation Information Computing Development Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT & Future Planning under grant NRF2015M3C4A7065522.

Publisher Copyright:
© 2017 IEEE.

All Science Journal Classification (ASJC) codes

  • Software
  • Mathematics(all)
  • Hardware and Architecture

Fingerprint

Dive into the research topics of 'Parallel Construction of Simultaneous Deterministic Finite Automata on Shared-Memory Multicores'. Together they form a unique fingerprint.

Cite this