Patient selection for corneal topographic evaluation of keratoconus: A screening approach using artificial intelligence

Hyunmin Ahn, Na Eun Kim, Jae Lim Chung, Young Jun Kim, Ikhyun Jun, Tae Im Kim, Kyoung Yul Seo

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)


Background: Corneal topography is a clinically validated examination method for keratoconus. However, there is no clear guideline regarding patient selection for corneal topography. We developed and validated a novel artificial intelligence (AI) model to identify patients who would benefit from corneal topography based on basic ophthalmologic examinations, including a survey of visual impairment, best-corrected visual acuity (BCVA) measurement, intraocular pressure (IOP) measurement, and autokeratometry. Methods: A total of five AI models (three individual models with fully connected neural network including the XGBoost, and the TabNet models, and two ensemble models with hard and soft voting methods) were trained and validated. We used three datasets collected from the records of 2,613 patients' basic ophthalmologic examinations from two institutions to train and validate the AI models. We trained the AI models using a dataset from a third medical institution to determine whether corneal topography was needed to detect keratoconus. Finally, prospective intra-validation dataset (internal test dataset) and extra-validation dataset from a different medical institution (external test dataset) were used to assess the performance of the AI models. Results: The ensemble model with soft voting method outperformed all other AI models in sensitivity when predicting which patients needed corneal topography (90.5% in internal test dataset and 96.4% in external test dataset). In the error analysis, most of the predicting error occurred within the range of the subclinical keratoconus and the suspicious D-score in the Belin-Ambrósio enhanced ectasia display. In the feature importance analysis, out of 18 features, IOP was the highest ranked feature when comparing the average value of the relative attributions of three individual AI models, followed by the difference in the value of mean corneal power. Conclusion: An AI model using the results of basic ophthalmologic examination has the potential to recommend corneal topography for keratoconus. In this AI algorithm, IOP and the difference between the two eyes, which may be undervalued clinical information, were important factors in the success of the AI model, and may be worth further reviewing in research and clinical practice for keratoconus screening.

Original languageEnglish
Article number934865
JournalFrontiers in Medicine
Publication statusPublished - 2022 Aug 4

Bibliographical note

Funding Information:
This work was supported by Korea Mouse Phenotyping Project (NRF-2013M3A9D5072551) from the Ministry of Science and ICT through the National Research Foundation.

Publisher Copyright:
Copyright © 2022 Ahn, Kim, Chung, Kim, Jun, Kim and Seo.

All Science Journal Classification (ASJC) codes

  • Medicine(all)


Dive into the research topics of 'Patient selection for corneal topographic evaluation of keratoconus: A screening approach using artificial intelligence'. Together they form a unique fingerprint.

Cite this