Abstract
A credit scoring model for technology-based small and medium enterprises presupposes evaluator objectivity and evaluation consistency; however, there is always some amount of error in any technology evaluation. This can be due in part to the subjective evaluation attributes that comprise part of the credit scoring model. The evaluated values of subjective attributes can vary among evaluators. In this study, we identified the significant characteristics of both evaluator and evaluation teams in terms of evaluation error using a decision tree analysis. Our results can improve the accuracy of a wide range of evaluation procedures for technology financing.
Original language | English |
---|---|
Pages (from-to) | 1051-1064 |
Number of pages | 14 |
Journal | Journal of the Operational Research Society |
Volume | 63 |
Issue number | 8 |
DOIs | |
Publication status | Published - 2012 Aug |
Bibliographical note
Funding Information:Acknowledgements—This work (research) is financially supported by the Ministry of Knowledge Economy (MKE) and Korea Institute for Advancement in Technology (KIAT) through the Workforce Development Program in Strategic Technology. Man Jae Kim and Ji Won Kim have participated in the revision stage as graduate research assistant.
All Science Journal Classification (ASJC) codes
- Management Information Systems
- Strategy and Management
- Management Science and Operations Research
- Marketing