Abstract
In this work, we propose an efficient method that generates pedestrian proposals suitable for the autonomous vehicle. Our main intuition is that depth information provides an important cue to assign the scale of pedestrian proposals. Based on the observation that in a 3-D world coordinate the scales of pedestrians are almost similar, we formulate the scales of pedestrian patches by projecting 3-D models to an image plane with its corresponding depth. We also introduce a scale-aware binary description using both color and depth images. By using this descriptor, the regression models are trained to rank the pedestrian proposal candidates and adjust the proposal bounding boxes for an accurate localization. Our algorithm achieves significant performance gains compared to conventional proposal generation methods on the challenging KITTI dataset.
Original language | English |
---|---|
Title of host publication | 2017 IEEE International Conference on Image Processing, ICIP 2017 - Proceedings |
Publisher | IEEE Computer Society |
Pages | 2045-2049 |
Number of pages | 5 |
ISBN (Electronic) | 9781509021758 |
DOIs | |
Publication status | Published - 2018 Feb 20 |
Event | 24th IEEE International Conference on Image Processing, ICIP 2017 - Beijing, China Duration: 2017 Sep 17 → 2017 Sep 20 |
Publication series
Name | Proceedings - International Conference on Image Processing, ICIP |
---|---|
Volume | 2017-September |
ISSN (Print) | 1522-4880 |
Other
Other | 24th IEEE International Conference on Image Processing, ICIP 2017 |
---|---|
Country/Territory | China |
City | Beijing |
Period | 17/9/17 → 17/9/20 |
Bibliographical note
Funding Information:This work was supported by Institute for Information & communications Technology Promotion(IITP) grant funded by the Korea government(MSIP)(No.2016-0-00197)
Publisher Copyright:
© 2017 IEEE.
All Science Journal Classification (ASJC) codes
- Software
- Computer Vision and Pattern Recognition
- Signal Processing