Abstract
The effect of the application of lanthanum strontrium manganite and yttria-stabilized zirconia (LSM-YSZ) nano-composite fabricated by pulsed laser deposition (PLD) as a cathode of solid oxide fuel cell (SOFC) is studied. A gradient-structure thin-film cathode composed of 1 micron-thick LSM-YSZ deposited at an ambient pressure (Pamb) of 200 mTorr; 2 micron-thick LSM-YSZ deposited at a Pamb of 300 mTorr; and 2 micron-thick lanthanum strontium cobaltite (LSC) current collecting layer was fabricated on an anode-supported SOFC with an ∼8 micron-thick YSZ electrolyte. In comparison with a 1 micron-thick nano-structure single-phase LSM cathode fabricated by PLD, it was obviously effective to increase triple phase boundaries (TPB) over the whole thickness of the cathode layer by employing the composite and increasing the physical thickness of the cathode. Both polarization and ohmic resistances of the cell were significantly reduced and the power output of the cell was improved by a factor of 1.6.
Original language | English |
---|---|
Pages (from-to) | 487-492 |
Number of pages | 6 |
Journal | Journal of the Korean Ceramic Society |
Volume | 48 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2011 Nov |
All Science Journal Classification (ASJC) codes
- Ceramics and Composites