Perturbation of NgTRF1 expression induces apoptosis-like cell death in tobacco BY-2 cells and implicates NgTRF1 in the control of telomere length and stability

Research output: Contribution to journalArticle

37 Citations (Scopus)

Abstract

Telomeres are specialized nucleoprotein complexes that are essential for preserving chromosome integrity in eukaryotic cells. Several potential telomere binding proteins have recently been identified in higher plants, but nothing is known about their in vivo functions. We previously identified NgTRF1 as a double-stranded telomeric repeat binding factor in tobacco (Nicotiana tabacum) and here show that the binding of NgTRF1 to telomeric repeats inhibits telomerase-mediated telomere extension. To determine whether NgTRF1 is involved in telomere length regulation, we established transgenic tobacco BY-2 cell lines that overexpress or suppress NgTRF1. Pulsed-field gel electrophoresis showed that 35S::NgTRF1 cells exhibited significantly shortened telomeres (45 to 10 kb), whereas 35S::antisense-NgTRF1 cells contained longer telomeres (80 to 25 kb) compared with wild-type and 35S::GUS control cells (65 to 15 kb), indicating that telomere length inversely correlates with the amount of functional NgTRF1 in BY-2 cells. 35S::NgTRF1 cells with shorter telomeres displayed a progressive reduction in cell viability and stopped dividing after 25 to 40 successive rounds of 12-d batch subculture, in sharp contrast with control cells, which have an unlimited capacity for division. Internucleosomal DNA fragmentation, mitochondrial release of cytochrome c, and terminal deoxynucleotidyltransferase- mediated dUTP nick end labeling positive nuclei were detected in 35S::NgTRF1 cells during prolonged subculture, indicating that enhanced cell death was attributable to an apoptosis-like mechanism. 35S::antisense-NgTRF1 cells containing low levels of NgTRF1 also exhibited a progressive decrease in cell viability and apoptotic cell death, but less so than did 35S::NgTRF1 cells, suggesting that the level of NgTRF1 is critically associated with cell viability. Taken together, these data indicate that perturbation of NgTRF1 expression results in changes in telomere length and stability, which in turn causes apoptotic cell death in transgenic BY-2 cells. These results are discussed in light of the suggestion that NgTRF1 is involved in the mechanism by which telomere length and stability are maintained. We further suggest that the structural stability of telomeres, in addition to length maintenance, is essential for their function and for the immortality of BY-2 cells.

Original languageEnglish
Pages (from-to)3370-3385
Number of pages16
JournalPlant Cell
Volume16
Issue number12
DOIs
Publication statusPublished - 2004 Dec 1

Fingerprint

telomeres
Telomere
Tobacco
cell death
Cell Death
tobacco
apoptosis
Apoptosis
cells
cell viability
Cell Survival
Telomere-Binding Proteins
genetically modified organisms
Telomere Shortening
telomerase
nucleoproteins
Nucleoproteins
DNA Nucleotidylexotransferase
Pulsed Field Gel Electrophoresis
Telomerase

All Science Journal Classification (ASJC) codes

  • Plant Science
  • Cell Biology

Cite this

@article{ec804f0265f4426f9b2621e935dec0ca,
title = "Perturbation of NgTRF1 expression induces apoptosis-like cell death in tobacco BY-2 cells and implicates NgTRF1 in the control of telomere length and stability",
abstract = "Telomeres are specialized nucleoprotein complexes that are essential for preserving chromosome integrity in eukaryotic cells. Several potential telomere binding proteins have recently been identified in higher plants, but nothing is known about their in vivo functions. We previously identified NgTRF1 as a double-stranded telomeric repeat binding factor in tobacco (Nicotiana tabacum) and here show that the binding of NgTRF1 to telomeric repeats inhibits telomerase-mediated telomere extension. To determine whether NgTRF1 is involved in telomere length regulation, we established transgenic tobacco BY-2 cell lines that overexpress or suppress NgTRF1. Pulsed-field gel electrophoresis showed that 35S::NgTRF1 cells exhibited significantly shortened telomeres (45 to 10 kb), whereas 35S::antisense-NgTRF1 cells contained longer telomeres (80 to 25 kb) compared with wild-type and 35S::GUS control cells (65 to 15 kb), indicating that telomere length inversely correlates with the amount of functional NgTRF1 in BY-2 cells. 35S::NgTRF1 cells with shorter telomeres displayed a progressive reduction in cell viability and stopped dividing after 25 to 40 successive rounds of 12-d batch subculture, in sharp contrast with control cells, which have an unlimited capacity for division. Internucleosomal DNA fragmentation, mitochondrial release of cytochrome c, and terminal deoxynucleotidyltransferase- mediated dUTP nick end labeling positive nuclei were detected in 35S::NgTRF1 cells during prolonged subculture, indicating that enhanced cell death was attributable to an apoptosis-like mechanism. 35S::antisense-NgTRF1 cells containing low levels of NgTRF1 also exhibited a progressive decrease in cell viability and apoptotic cell death, but less so than did 35S::NgTRF1 cells, suggesting that the level of NgTRF1 is critically associated with cell viability. Taken together, these data indicate that perturbation of NgTRF1 expression results in changes in telomere length and stability, which in turn causes apoptotic cell death in transgenic BY-2 cells. These results are discussed in light of the suggestion that NgTRF1 is involved in the mechanism by which telomere length and stability are maintained. We further suggest that the structural stability of telomeres, in addition to length maintenance, is essential for their function and for the immortality of BY-2 cells.",
author = "Yang, {Seong Wook} and Sung, {Keun Kim} and Kim, {Woo Taek}",
year = "2004",
month = "12",
day = "1",
doi = "10.1105/tpc.104.026278",
language = "English",
volume = "16",
pages = "3370--3385",
journal = "Plant Cell",
issn = "1040-4651",
publisher = "American Society of Plant Biologists",
number = "12",

}

TY - JOUR

T1 - Perturbation of NgTRF1 expression induces apoptosis-like cell death in tobacco BY-2 cells and implicates NgTRF1 in the control of telomere length and stability

AU - Yang, Seong Wook

AU - Sung, Keun Kim

AU - Kim, Woo Taek

PY - 2004/12/1

Y1 - 2004/12/1

N2 - Telomeres are specialized nucleoprotein complexes that are essential for preserving chromosome integrity in eukaryotic cells. Several potential telomere binding proteins have recently been identified in higher plants, but nothing is known about their in vivo functions. We previously identified NgTRF1 as a double-stranded telomeric repeat binding factor in tobacco (Nicotiana tabacum) and here show that the binding of NgTRF1 to telomeric repeats inhibits telomerase-mediated telomere extension. To determine whether NgTRF1 is involved in telomere length regulation, we established transgenic tobacco BY-2 cell lines that overexpress or suppress NgTRF1. Pulsed-field gel electrophoresis showed that 35S::NgTRF1 cells exhibited significantly shortened telomeres (45 to 10 kb), whereas 35S::antisense-NgTRF1 cells contained longer telomeres (80 to 25 kb) compared with wild-type and 35S::GUS control cells (65 to 15 kb), indicating that telomere length inversely correlates with the amount of functional NgTRF1 in BY-2 cells. 35S::NgTRF1 cells with shorter telomeres displayed a progressive reduction in cell viability and stopped dividing after 25 to 40 successive rounds of 12-d batch subculture, in sharp contrast with control cells, which have an unlimited capacity for division. Internucleosomal DNA fragmentation, mitochondrial release of cytochrome c, and terminal deoxynucleotidyltransferase- mediated dUTP nick end labeling positive nuclei were detected in 35S::NgTRF1 cells during prolonged subculture, indicating that enhanced cell death was attributable to an apoptosis-like mechanism. 35S::antisense-NgTRF1 cells containing low levels of NgTRF1 also exhibited a progressive decrease in cell viability and apoptotic cell death, but less so than did 35S::NgTRF1 cells, suggesting that the level of NgTRF1 is critically associated with cell viability. Taken together, these data indicate that perturbation of NgTRF1 expression results in changes in telomere length and stability, which in turn causes apoptotic cell death in transgenic BY-2 cells. These results are discussed in light of the suggestion that NgTRF1 is involved in the mechanism by which telomere length and stability are maintained. We further suggest that the structural stability of telomeres, in addition to length maintenance, is essential for their function and for the immortality of BY-2 cells.

AB - Telomeres are specialized nucleoprotein complexes that are essential for preserving chromosome integrity in eukaryotic cells. Several potential telomere binding proteins have recently been identified in higher plants, but nothing is known about their in vivo functions. We previously identified NgTRF1 as a double-stranded telomeric repeat binding factor in tobacco (Nicotiana tabacum) and here show that the binding of NgTRF1 to telomeric repeats inhibits telomerase-mediated telomere extension. To determine whether NgTRF1 is involved in telomere length regulation, we established transgenic tobacco BY-2 cell lines that overexpress or suppress NgTRF1. Pulsed-field gel electrophoresis showed that 35S::NgTRF1 cells exhibited significantly shortened telomeres (45 to 10 kb), whereas 35S::antisense-NgTRF1 cells contained longer telomeres (80 to 25 kb) compared with wild-type and 35S::GUS control cells (65 to 15 kb), indicating that telomere length inversely correlates with the amount of functional NgTRF1 in BY-2 cells. 35S::NgTRF1 cells with shorter telomeres displayed a progressive reduction in cell viability and stopped dividing after 25 to 40 successive rounds of 12-d batch subculture, in sharp contrast with control cells, which have an unlimited capacity for division. Internucleosomal DNA fragmentation, mitochondrial release of cytochrome c, and terminal deoxynucleotidyltransferase- mediated dUTP nick end labeling positive nuclei were detected in 35S::NgTRF1 cells during prolonged subculture, indicating that enhanced cell death was attributable to an apoptosis-like mechanism. 35S::antisense-NgTRF1 cells containing low levels of NgTRF1 also exhibited a progressive decrease in cell viability and apoptotic cell death, but less so than did 35S::NgTRF1 cells, suggesting that the level of NgTRF1 is critically associated with cell viability. Taken together, these data indicate that perturbation of NgTRF1 expression results in changes in telomere length and stability, which in turn causes apoptotic cell death in transgenic BY-2 cells. These results are discussed in light of the suggestion that NgTRF1 is involved in the mechanism by which telomere length and stability are maintained. We further suggest that the structural stability of telomeres, in addition to length maintenance, is essential for their function and for the immortality of BY-2 cells.

UR - http://www.scopus.com/inward/record.url?scp=21644450310&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=21644450310&partnerID=8YFLogxK

U2 - 10.1105/tpc.104.026278

DO - 10.1105/tpc.104.026278

M3 - Article

C2 - 15528297

AN - SCOPUS:21644450310

VL - 16

SP - 3370

EP - 3385

JO - Plant Cell

JF - Plant Cell

SN - 1040-4651

IS - 12

ER -