Pesticide metabolite and oxidative stress in male farmers exposed to pesticide

Kang Myoung Lee, Sangyoo Park, Kyungsuk Lee, Sung Soo Oh, Sangbaek Koh

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

Background: The objective of this study was to measure malondialdehyde (MDA) and isoprostane which has been used as an index of lipid injury, 8-hydroxy-2'-deoxyguanosine (8-OHdG), which has been used as an index of DNA damage, and dialkyl-phosphate (DAP), which has been used to quantify pesticide exposure, and to investigate the relationship between pesticide exposure and oxidative stress. Methods: This study was a cross-sectional study that evaluated 84 male farmers exposure to pesticide. In this study, 8-OHdG, isoprostane, and MDA were measured as oxidative stress indices, and dialkyl-phosphate (dimethylphosphate(DMP), diethylphosphate(DEP), dimethylthiophosphate(DMTP), and diethylthiophosphate (DETP)) excreted in the urine was also measured to evaluate pesticide exposure. A linear regression analysis was performed to investigate the relationship between pesticide metabolites, and oxidative stress biomarkers. Results: A Correlation analysis was performed for pesticide exposure month (PEI), cumulative exposure index (CEI), and DAP as well as the concentration of the oxidative stress biomarkers. The PEM significantly and positively correlated to the levels of 8-OHdG, isoprostane, CEI, and DMP. CEI showed a correlation to 8-OHdG and PEM. DMP, DEP, and DETP showed a positive correlation to 8-OHdG, isoprostane, and MDA. A correlation analysis was adjusted some demographic characteristics, such as age, smoking, drinking, and exercise to determine the relationship between pesticide exposure and oxidative stress. The 8-OHdG, isoprostane, and MDA levels were significantly related to the DMP (ß = 0.320), DEP (ß = 0.390), and DETP (ß = 0.082); DMP (ß = 0.396), DEP (ß = 0.508), and DETP (ß = 0.504); and DMP (ß = 0.432), DEP (ß = 0.508), and DETP (ß = 0.329) levels, respectively. Conclusions: The concentration between oxidative stress biomarkers and the pesticide metabolite were a positive correlation. Indicators of oxidative stress was associated with a pesticide metabolite DMP, DEP, and DETP. Therefore, Pesticide exposure and oxidative stress were relevant.

Original languageEnglish
Article number5
JournalAnnals of Occupational and Environmental Medicine
Volume29
Issue number1
DOIs
Publication statusPublished - 2017 Feb 28

Fingerprint

Pesticides
8-epi-prostaglandin F2alpha
Oxidative Stress
Malondialdehyde
Biomarkers
Phosphates
Farmers
Isoprostanes
Drinking
DNA Damage
dimethyl phosphate
Linear Models
Cross-Sectional Studies
Smoking
Regression Analysis
Demography
Urine
Exercise
Lipids
Wounds and Injuries

All Science Journal Classification (ASJC) codes

  • Public Health, Environmental and Occupational Health

Cite this

@article{669bcdb5a30f4b0c9915736109f8b69e,
title = "Pesticide metabolite and oxidative stress in male farmers exposed to pesticide",
abstract = "Background: The objective of this study was to measure malondialdehyde (MDA) and isoprostane which has been used as an index of lipid injury, 8-hydroxy-2'-deoxyguanosine (8-OHdG), which has been used as an index of DNA damage, and dialkyl-phosphate (DAP), which has been used to quantify pesticide exposure, and to investigate the relationship between pesticide exposure and oxidative stress. Methods: This study was a cross-sectional study that evaluated 84 male farmers exposure to pesticide. In this study, 8-OHdG, isoprostane, and MDA were measured as oxidative stress indices, and dialkyl-phosphate (dimethylphosphate(DMP), diethylphosphate(DEP), dimethylthiophosphate(DMTP), and diethylthiophosphate (DETP)) excreted in the urine was also measured to evaluate pesticide exposure. A linear regression analysis was performed to investigate the relationship between pesticide metabolites, and oxidative stress biomarkers. Results: A Correlation analysis was performed for pesticide exposure month (PEI), cumulative exposure index (CEI), and DAP as well as the concentration of the oxidative stress biomarkers. The PEM significantly and positively correlated to the levels of 8-OHdG, isoprostane, CEI, and DMP. CEI showed a correlation to 8-OHdG and PEM. DMP, DEP, and DETP showed a positive correlation to 8-OHdG, isoprostane, and MDA. A correlation analysis was adjusted some demographic characteristics, such as age, smoking, drinking, and exercise to determine the relationship between pesticide exposure and oxidative stress. The 8-OHdG, isoprostane, and MDA levels were significantly related to the DMP ({\ss} = 0.320), DEP ({\ss} = 0.390), and DETP ({\ss} = 0.082); DMP ({\ss} = 0.396), DEP ({\ss} = 0.508), and DETP ({\ss} = 0.504); and DMP ({\ss} = 0.432), DEP ({\ss} = 0.508), and DETP ({\ss} = 0.329) levels, respectively. Conclusions: The concentration between oxidative stress biomarkers and the pesticide metabolite were a positive correlation. Indicators of oxidative stress was associated with a pesticide metabolite DMP, DEP, and DETP. Therefore, Pesticide exposure and oxidative stress were relevant.",
author = "Lee, {Kang Myoung} and Sangyoo Park and Kyungsuk Lee and Oh, {Sung Soo} and Sangbaek Koh",
year = "2017",
month = "2",
day = "28",
doi = "10.1186/s40557-017-0162-3",
language = "English",
volume = "29",
journal = "Annals of Occupational and Environmental Medicine",
issn = "2052-4374",
publisher = "BioMed Central",
number = "1",

}

Pesticide metabolite and oxidative stress in male farmers exposed to pesticide. / Lee, Kang Myoung; Park, Sangyoo; Lee, Kyungsuk; Oh, Sung Soo; Koh, Sangbaek.

In: Annals of Occupational and Environmental Medicine, Vol. 29, No. 1, 5, 28.02.2017.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Pesticide metabolite and oxidative stress in male farmers exposed to pesticide

AU - Lee, Kang Myoung

AU - Park, Sangyoo

AU - Lee, Kyungsuk

AU - Oh, Sung Soo

AU - Koh, Sangbaek

PY - 2017/2/28

Y1 - 2017/2/28

N2 - Background: The objective of this study was to measure malondialdehyde (MDA) and isoprostane which has been used as an index of lipid injury, 8-hydroxy-2'-deoxyguanosine (8-OHdG), which has been used as an index of DNA damage, and dialkyl-phosphate (DAP), which has been used to quantify pesticide exposure, and to investigate the relationship between pesticide exposure and oxidative stress. Methods: This study was a cross-sectional study that evaluated 84 male farmers exposure to pesticide. In this study, 8-OHdG, isoprostane, and MDA were measured as oxidative stress indices, and dialkyl-phosphate (dimethylphosphate(DMP), diethylphosphate(DEP), dimethylthiophosphate(DMTP), and diethylthiophosphate (DETP)) excreted in the urine was also measured to evaluate pesticide exposure. A linear regression analysis was performed to investigate the relationship between pesticide metabolites, and oxidative stress biomarkers. Results: A Correlation analysis was performed for pesticide exposure month (PEI), cumulative exposure index (CEI), and DAP as well as the concentration of the oxidative stress biomarkers. The PEM significantly and positively correlated to the levels of 8-OHdG, isoprostane, CEI, and DMP. CEI showed a correlation to 8-OHdG and PEM. DMP, DEP, and DETP showed a positive correlation to 8-OHdG, isoprostane, and MDA. A correlation analysis was adjusted some demographic characteristics, such as age, smoking, drinking, and exercise to determine the relationship between pesticide exposure and oxidative stress. The 8-OHdG, isoprostane, and MDA levels were significantly related to the DMP (ß = 0.320), DEP (ß = 0.390), and DETP (ß = 0.082); DMP (ß = 0.396), DEP (ß = 0.508), and DETP (ß = 0.504); and DMP (ß = 0.432), DEP (ß = 0.508), and DETP (ß = 0.329) levels, respectively. Conclusions: The concentration between oxidative stress biomarkers and the pesticide metabolite were a positive correlation. Indicators of oxidative stress was associated with a pesticide metabolite DMP, DEP, and DETP. Therefore, Pesticide exposure and oxidative stress were relevant.

AB - Background: The objective of this study was to measure malondialdehyde (MDA) and isoprostane which has been used as an index of lipid injury, 8-hydroxy-2'-deoxyguanosine (8-OHdG), which has been used as an index of DNA damage, and dialkyl-phosphate (DAP), which has been used to quantify pesticide exposure, and to investigate the relationship between pesticide exposure and oxidative stress. Methods: This study was a cross-sectional study that evaluated 84 male farmers exposure to pesticide. In this study, 8-OHdG, isoprostane, and MDA were measured as oxidative stress indices, and dialkyl-phosphate (dimethylphosphate(DMP), diethylphosphate(DEP), dimethylthiophosphate(DMTP), and diethylthiophosphate (DETP)) excreted in the urine was also measured to evaluate pesticide exposure. A linear regression analysis was performed to investigate the relationship between pesticide metabolites, and oxidative stress biomarkers. Results: A Correlation analysis was performed for pesticide exposure month (PEI), cumulative exposure index (CEI), and DAP as well as the concentration of the oxidative stress biomarkers. The PEM significantly and positively correlated to the levels of 8-OHdG, isoprostane, CEI, and DMP. CEI showed a correlation to 8-OHdG and PEM. DMP, DEP, and DETP showed a positive correlation to 8-OHdG, isoprostane, and MDA. A correlation analysis was adjusted some demographic characteristics, such as age, smoking, drinking, and exercise to determine the relationship between pesticide exposure and oxidative stress. The 8-OHdG, isoprostane, and MDA levels were significantly related to the DMP (ß = 0.320), DEP (ß = 0.390), and DETP (ß = 0.082); DMP (ß = 0.396), DEP (ß = 0.508), and DETP (ß = 0.504); and DMP (ß = 0.432), DEP (ß = 0.508), and DETP (ß = 0.329) levels, respectively. Conclusions: The concentration between oxidative stress biomarkers and the pesticide metabolite were a positive correlation. Indicators of oxidative stress was associated with a pesticide metabolite DMP, DEP, and DETP. Therefore, Pesticide exposure and oxidative stress were relevant.

UR - http://www.scopus.com/inward/record.url?scp=85018380744&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85018380744&partnerID=8YFLogxK

U2 - 10.1186/s40557-017-0162-3

DO - 10.1186/s40557-017-0162-3

M3 - Article

AN - SCOPUS:85018380744

VL - 29

JO - Annals of Occupational and Environmental Medicine

JF - Annals of Occupational and Environmental Medicine

SN - 2052-4374

IS - 1

M1 - 5

ER -