Abstract
Modern neural speech enhancement models usually include various forms of phase information in their training loss terms, either explicitly or implicitly. However, these loss terms are typically designed to reduce the distortion of phase spectrum values at specific frequencies, which ensures they do not significantly affect the quality of the enhanced speech. In this paper, we propose an effective phase reconstruction strategy for neural speech enhancement that can operate in noisy environments. Specifically, we introduce a phase continuity loss that considers relative phase variations across the time and frequency axes. By including this phase continuity loss in a state-of-the-art neural speech enhancement system trained with reconstruction loss and a number of magnitude spectral losses, we show that our proposed method further improves the quality of enhanced speech signals over the baseline, especially when training is done jointly with a magnitude spectrum loss.
Original language | English |
---|---|
Title of host publication | 2022 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 6942-6946 |
Number of pages | 5 |
ISBN (Electronic) | 9781665405409 |
DOIs | |
Publication status | Published - 2022 |
Event | 47th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Virtual, Online, Singapore Duration: 2022 May 23 → 2022 May 27 |
Publication series
Name | ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings |
---|---|
Volume | 2022-May |
ISSN (Print) | 1520-6149 |
Conference
Conference | 47th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 |
---|---|
Country/Territory | Singapore |
City | Virtual, Online |
Period | 22/5/23 → 22/5/27 |
Bibliographical note
Funding Information:This research was sponsored by Naver Corporation.
Publisher Copyright:
© 2022 IEEE
All Science Journal Classification (ASJC) codes
- Software
- Signal Processing
- Electrical and Electronic Engineering