Phishing URL Detection: A Network-based Approach Robust to Evasion

Taeri Kim, Noseong Park, Jiwon Hong, Sang Wook Kim

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Many cyberattacks start with disseminating phishing URLs. When clicking these phishing URLs, the victim's private information is leaked to the attacker. There have been proposed several machine learning methods to detect phishing URLs. However, it still remains under-explored to detect phishing URLs with evasion, i.e., phishing URLs that pretend to be benign by manipulating patterns. In many cases, the attacker i) reuses prepared phishing web pages because making a completely brand-new set costs non-trivial expenses, ii) prefers hosting companies that do not require private information and are cheaper than others, iii) prefers shared hosting for cost efficiency, and iv) sometimes uses benign domains, IP addresses, and URL string patterns to evade existing detection methods. Inspired by those behavioral characteristics, we present a network-based inference method to accurately detect phishing URLs camouflaged with legitimate patterns, i.e., robust to evasion. In the network approach, a phishing URL will be still identified as phishy even after evasion unless a majority of its neighbors in the network are evaded at the same time. Our method consistently shows better detection performance throughout various experimental tests than state-of-the-art methods, e.g., F-1 of 0.891 for our method vs. 0.840 for the best feature-based method.

Original languageEnglish
Title of host publicationCCS 2022 - Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security
PublisherAssociation for Computing Machinery
Pages1769-1782
Number of pages14
ISBN (Electronic)9781450394505
DOIs
Publication statusPublished - 2022 Nov 7
Event28th ACM SIGSAC Conference on Computer and Communications Security, CCS 2022 - Los Angeles, United States
Duration: 2022 Nov 72022 Nov 11

Publication series

NameProceedings of the ACM Conference on Computer and Communications Security
ISSN (Print)1543-7221

Conference

Conference28th ACM SIGSAC Conference on Computer and Communications Security, CCS 2022
Country/TerritoryUnited States
CityLos Angeles
Period22/11/722/11/11

Bibliographical note

Funding Information:
The work of Sang-Wook Kim was supported by the Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. RS-2022-00155586) and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2018R1A5A7059549). The work of Noseong Park was supported by the Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korean government (MSIT) (No. 2020-0-01361, Artificial Intelligence Graduate School Program (Yonsei University)).

Publisher Copyright:
© 2022 ACM.

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Networks and Communications

Fingerprint

Dive into the research topics of 'Phishing URL Detection: A Network-based Approach Robust to Evasion'. Together they form a unique fingerprint.

Cite this