Photo-Responsive Molecular Junctions Activated by Perovskite/Graphene Heterostructure Electrode

Changjun Lee, Junwoo Kim, Jonghoon Lee, Woocheol Lee, Minwoo Song, Kyeong Yoon Baek, Jiwon Shin, Jongwoo Nam, Jeongjae Lee, Keehoon Kang, Takhee Lee

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)


Photoresponsivity is a fundamental process that constitutes optoelectronic devices. In molecular junction devices, one of the most adopted strategies is to employ photoactive molecules that can undergo conformational change upon light illumination as the conduction channel. However, such devices suffer from their relatively low photoresponsivity, long switching time, and unidirectional switching. In this study, the authors employed organohalide perovskite (OHP)/graphene heterojunction as a photoactive electrode that acted a source of photo-generated carriers collected as photocurrent in self-assembled monolayer (SAM)-based molecular junctions. This hybrid device architecture of perovskite/graphene/SAM allows the molecular junctions to attain a high photoresponsivity with molecules that have intrinsically little photoresponse. The authors elucidate the role of the molecular SAM in enhancing the photoresponsivity by systematically examining the transport and charge transfer processes at the graphene/SAM interface via molecules with different intrinsic dipole moments. This, corroborated with a theoretical analysis, reveals the origin of the observed photoresponsivity as light-induced coupling between the SAM and the OHP/graphene electrode within the orbital-mediated resonant tunnelling transport regime. These findings advance the understanding of photo-induced charge transport in molecular junctions with heterointerfaces, providing a road-map for designing high-performance molecular optoelectronic devices based on hybrid device architecture.

Original languageEnglish
Article number2200049
JournalAdvanced Optical Materials
Issue number11
Publication statusPublished - 2022 Jun 3

Bibliographical note

Funding Information:
C.L. and J.K. contributed equally to this work. The authors appreciate the financial support of the National Research Foundation of Korea (NRF) grant (No. 2021R1A2C3004783 and No. 2021R1C1C1010266) and the Nano•Material Technology Development Program grant (No. 2021M3H4A1A02049651) through NRF funded by the Ministry of Science and ICT (MSIT) of Korea and the industry‐university cooperation program by the Samsung Electronics Co., Ltd (IO201211‐08047‐01). K.K. appreciates the support of the Technology Innovation Program (20013621, Center for Super Critical Material Industrial Technology) funded by the Ministry of Trade, Industry & Energy of Korea. Jeongjae L. was supported by the NRF grant funded by MSIT of Korea (No. 2019R1A6A1A10073437).

Publisher Copyright:
© 2022 Wiley-VCH GmbH.

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics


Dive into the research topics of 'Photo-Responsive Molecular Junctions Activated by Perovskite/Graphene Heterostructure Electrode'. Together they form a unique fingerprint.

Cite this