Photosynthetic Nanomaterial Hybrids for Bioelectricity and Renewable Energy Systems

Yong Jae Kim, Hyeonaug Hong, Jae Hyoung Yun, Seon Il Kim, Ho Yun Jung, Won Hyoung Ryu

Research output: Contribution to journalReview articlepeer-review

4 Citations (Scopus)

Abstract

Harvesting solar energy in the form of electricity from the photosynthesis of plants, algal cells, and bacteria has been researched as the most environment-friendly renewable energy technology in the last decade. The primary challenge has been the engineering of electrochemical interfacing with photosynthetic apparatuses, organelles, or whole cells. However, with the aid of low-dimensional nanomaterials, there have been many advances, including enhanced photon absorption, increased generation of photosynthetic electrons (PEs), and more efficient transfer of PEs to electrodes. These advances have demonstrated the possibility for the technology to advance to a new level. In this article, the fundamentals of photosynthesis are introduced. How PE harvesting systems have improved concerning solar energy absorption, PE production, and PE collection by electrodes is discussed. The review focuses on how different kinds of nanomaterials are applied and function in interfacing with photosynthetic materials for enhanced PE harvesting. Finally, the review analyzes how the performance of PE harvesting and stand-alone systems have evolved so far and its future prospects.

Original languageEnglish
Article number2005919
JournalAdvanced Materials
Volume33
Issue number47
DOIs
Publication statusPublished - 2021 Nov 25

Bibliographical note

Funding Information:
Y.J.K. and H.H. contributed equally to this work. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIT) (No. 2020R1A2C3013158, No. 2015R1A5A1037668), and by Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE)(No. 20193310100030, Development of high efficient F‐class gas turbine hot component by controlling and applying Design for Additive Manufacturing).

Publisher Copyright:
© 2020 Wiley-VCH GmbH.

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Photosynthetic Nanomaterial Hybrids for Bioelectricity and Renewable Energy Systems'. Together they form a unique fingerprint.

Cite this