Polyurethane nanoweb-based textile sensors treated with single-walled carbon nanotubes and silver nanowire

Eugene Lee, Gilsoo Cho

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

This paper outlines research on polyurethane (PU) nanowebs with enhanced electrical conductivity by applying single-walled carbon nanotubes (SWCNTs) with silver nanowire (AgNW) for use as a textile sensor. The objectives of this study are as follows: (1) to find out how electrical conductivity changed as the amount of SWCNT dispersion increased; (2) to investigate how electrical conductivity improved as the amount of AgNW dispersion increased; (3) to examine the effect of heat post-treatment and ethanol pre-treatment on the conductivity; and (4) to characterize the surface and chemical properties to verify whether the specimens were successfully treated with SWCNTs and AgNW. The PU nanoweb was treated with three different amounts of SWCNT dispersion by using the dip-coating method, and three different amounts of AgNW dispersion was mixed with SWCNT dispersion to increase electrical conductivity. The electrical resistance was analyzed by four-point probe equipment. The surface and chemical properties were characterized by field emission scanning electron microscopy, high-resolution X-ray diffraction, Raman, and Fourier transform infrared spectroscopy analysis. As a result, the resistance decreased when the amount of SWCNT dispersion increased. However, the resistance increased as the amount of AgNW dispersion increased. After the heat and ethanol treatments, the resistance reduced rapidly so that specimens SA1-H, SA1-E, and SA1-HE had much lower resistance. The results of surface and chemical properties showed that the SWCNT and AgNW formed electrical networks, which might improve electrical properties. Also, it confirmed the presence of the SWCNT and AgNW, which meant that the conductive materials were successfully coated on the PU nanoweb.

Original languageEnglish
Pages (from-to)2938-2951
Number of pages14
JournalTextile Research Journal
Volume89
Issue number14
DOIs
Publication statusPublished - 2019 Jul 1

All Science Journal Classification (ASJC) codes

  • Chemical Engineering (miscellaneous)
  • Polymers and Plastics

Fingerprint Dive into the research topics of 'Polyurethane nanoweb-based textile sensors treated with single-walled carbon nanotubes and silver nanowire'. Together they form a unique fingerprint.

  • Cite this