Porphyrin Sensitizers with Donor Structural Engineering for Superior Performance Dye-Sensitized Solar Cells and Tandem Solar Cells for Water Splitting Applications

Sung Ho Kang, Myung Jin Jeong, Yu Kyung Eom, In Taek Choi, Seung Mo Kwon, Youngjun Yoo, Jeongho Kim, Jeong Kwon, Jong Hyeok Park, Hwan Kyu Kim

Research output: Contribution to journalArticle

89 Citations (Scopus)

Abstract

Zn(II)–porphyrin sensitizers, coded as SGT-020 and SGT-021, are designed and synthesized through donor structural engineering. The photovoltaic (PV) performances of SGT sensitizer-based dye-sensitized solar cells (DSSCs) are systematically evaluated in a thorough SM315 as a reference sensitizer. The effect of the donor ability and the donor bulkiness on photovoltaic performances is investigated for establishing the structure–performance relationship in the platform of porphyrin-triple bond-benzothiadiazole-acceptor sensitizers. By introducing a more bulky fluorene unit to the amine group in the SM315, the power conversion efficiency (PCE) is enhanced with the increased short-circuit current (Jsc) and open-circuit voltage (Voc), due to the improved light-harvesting ability and the efficient prevention of charge recombination, respectively. As a consequence, a maximum PCE of 12.11% is obtained for SGT-021, whose PCE is much higher than the 11.70% PCE for SM315. To further improve their maximum efficiency, the first parallel tandem DSSCs employing cobalt electrolyte in the top and bottom cells are demonstrated and an extremely high efficiency of 14% is achieved, which is currently the highest reported value for tandem DSSCs. The series tandem DSSCs give a remarkably high Voc value of >1.83 V. From this DSSC tandem configuration, 7.4% applied bias photon-to-current efficiency is achieved for solar water splitting.

Original languageEnglish
JournalAdvanced Energy Materials
Volume7
Issue number7
DOIs
Publication statusPublished - 2017 Apr 5

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • Materials Science(all)

Fingerprint Dive into the research topics of 'Porphyrin Sensitizers with Donor Structural Engineering for Superior Performance Dye-Sensitized Solar Cells and Tandem Solar Cells for Water Splitting Applications'. Together they form a unique fingerprint.

  • Cite this