Preconditioning process for dermal tissue decellularization using electroporation with sonication

Min Ah Koo, Hakyeong Jeong, Seung Hee Hong, Gyeung Mi Seon, Mi Hee Lee, Jong Chul Park

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

Decellularization to produce bioscaffolds composed of the extracellular matrix (ECM) uses enzymatic, chemical and physical methods to remove antigens and cellular components from tissues. Effective decellularization methods depend on the characteristics of tissues, and in particular, tissues with dense, complex structure and abundant lipid content are difficult to completely decellularize. Our study enables future research on the development of methods and treatments for fabricating bioscaffolds via decellularization of complex and rigid skin tissues, which are not commonly considered for decellularization to date as their structural and functional characteristics could not be preserved after severe decellularization. In this study, decellularization of human dermal tissue was done by a combination of both chemical (0.05% trypsin-EDTA, 2% SDS and 1% Triton X-100) and physical methods (electroporation and sonication). After decellularization, the content of DNA remaining in the tissue was quantitatively confirmed, and the structural change of the tissue and the retention and distribution of ECM components were evaluated through histological and histochemical analysis, respectively. Conditions of the chemical pretreatment that increase the efficiency of physical stimulation as well as decellularization, and conditions for electroporation and sonication without the use of detergents, unlike the methods performed in previous studies, were established to enable the complete decellularization of the skin tissue. The combinatorial decellularization treatment formed micropores in the lipid bilayers of the skin tissues while removing all cell and cellular residues without affecting the ECM properties. Therefore, this procedure can be widely used to fabricate bioscaffolds by decellularizing biological tissues with dense and complex structures.

Original languageEnglish
Article numberrbab071
JournalRegenerative Biomaterials
Volume9
DOIs
Publication statusPublished - 2022

Bibliographical note

Publisher Copyright:
© 2021 The Author(s).

All Science Journal Classification (ASJC) codes

  • Biomaterials

Fingerprint

Dive into the research topics of 'Preconditioning process for dermal tissue decellularization using electroporation with sonication'. Together they form a unique fingerprint.

Cite this