Abstract
Objective: To predict intra-operative (IOEs) and postoperative events (POEs) consequential to the derailment of the ideal clinical course of patient recovery. Materials and Methods: The Vattikuti Collective Quality Initiative is a multi-institutional dataset of patients who underwent robot-assisted partial nephectomy for kidney tumours. Machine-learning (ML) models were constructed to predict IOEs and POEs using logistic regression, random forest and neural networks. The models to predict IOEs used patient demographics and preoperative data. In addition to these, intra-operative data were used to predict POEs. Performance on the test dataset was assessed using area under the receiver-operating characteristic curve (AUC-ROC) and area under the precision-recall curve (PR-AUC). Results: The rates of IOEs and POEs were 5.62% and 20.98%, respectively. Models for predicting IOEs were constructed using data from 1690 patients and 38 variables; the best model had an AUC-ROC of 0.858 (95% confidence interval [CI] 0.762, 0.936) and a PR-AUC of 0.590 (95% CI 0.400, 0.759). Models for predicting POEs were trained using data from 1406 patients and 59 variables; the best model had an AUC-ROC of 0.875 (95% CI 0.834, 0.913) and a PR-AUC 0.706 (95% CI, 0.610, 0.790). Conclusions: The performance of the ML models in the present study was encouraging. Further validation in a multi-institutional clinical setting with larger datasets would be necessary to establish their clinical value. ML models can be used to predict significant events during and after surgery with good accuracy, paving the way for application in clinical practice to predict and intervene at an opportune time to avert complications and improve patient outcomes.
Original language | English |
---|---|
Pages (from-to) | 350-358 |
Number of pages | 9 |
Journal | BJU International |
Volume | 126 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2020 Sept 1 |
Bibliographical note
Funding Information:We gratefully acknowledge discussions and comments on the manuscript by our colleague Trevor Zeffiro. We are grateful to the Vattikuti Foundation for granting access to the VCQI database and RediMinds for funding this work. This publication only reflects the authors views. The funding agency is not liable for any use that may be made of the information contained herein.
Funding Information:
We gratefully acknowledge discussions and comments on the manuscript by our colleague Trevor Zeffiro. We are grateful to the Vattikuti Foundation for granting access to the VCQI database and RediMinds for funding this work. This publication only reflects the authors views. The funding agency is not liable for any use that may be made of the information contained herein.
Publisher Copyright:
© 2020 The Authors BJU International © 2020 BJU International Published by John Wiley & Sons Ltd
All Science Journal Classification (ASJC) codes
- Urology