Abstract
Many U.S. metropolitan cities are notorious for their severe shortage of parking spots. To this end, we present a proactive prediction-driven optimization framework to dynamically adjust parking prices. We use state-of-the-art deep learning technologies such as neural ordinary differential equations (NODEs) to design our future parking occupancy rate prediction model given historical occupancy rates and price information. Owing to the continuous and bijective characteristics of NODEs, in addition, we design a one-shot price optimization method given a pre-trained prediction model, which requires only one iteration to find the optimal solution. In other words, we optimize the price input to the pre-trained prediction model to achieve targeted occupancy rates in the parking blocks. We conduct experiments with the data collected in San Francisco and Seattle for years. Our prediction model shows the best accuracy in comparison with various temporal or spatio-temporal forecasting models. Our one-shot optimization method greatly outperforms other black-box and white-box search methods in terms of the search time and always returns the optimal price solution.
Original language | English |
---|---|
Title of host publication | CIKM 2022 - Proceedings of the 31st ACM International Conference on Information and Knowledge Management |
Publisher | Association for Computing Machinery |
Pages | 748-757 |
Number of pages | 10 |
ISBN (Electronic) | 9781450392365 |
DOIs | |
Publication status | Published - 2022 Oct 17 |
Event | 31st ACM International Conference on Information and Knowledge Management, CIKM 2022 - Atlanta, United States Duration: 2022 Oct 17 → 2022 Oct 21 |
Publication series
Name | International Conference on Information and Knowledge Management, Proceedings |
---|
Conference
Conference | 31st ACM International Conference on Information and Knowledge Management, CIKM 2022 |
---|---|
Country/Territory | United States |
City | Atlanta |
Period | 22/10/17 → 22/10/21 |
Bibliographical note
Funding Information:Noseong Park is the corresponding author. This work was supported by the Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korean government (MSIT) (No. 2020-0-01361, Artificial Intelligence Graduate School Program (Yonsei University)).
Publisher Copyright:
© 2022 ACM.
All Science Journal Classification (ASJC) codes
- Business, Management and Accounting(all)
- Decision Sciences(all)