Prediction of composite suitability index for physical habitat simulations using the ANFIS method

Sang Hwa Jung, Sung-Uk Choi

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

A physical habitat simulation is a useful tool for assessing the impact of river development or restoration on river ecosystem. Conventional methods of physical habitat simulation use the habitat suitability index models and their success depends largely on how well the model reflects monitoring data. One of preferred habitat suitability index models is habitat suitability curves, which are normally constructed based on monitoring data. However, these curves can easily be affected by the subjective opinion of the expert. This study introduces the ANFIS method for predicting the composite suitability index for use in physical habitat simulations. The ANFIS method is a hybrid type of artificial intelligence technique that combines the artificial neural network and fuzzy logic. The method is known to be a powerful approach especially for developing nonlinear relationships between input and output datasets. In this study, the ANFIS method was used to predict the composite suitability index for the physical habitat simulation of a 2.5 km long reach of the Dal River in Korea. Zacco platypus was chosen as the target fish of the study area. A 2D hydraulic simulation was performed, and the hydraulic model was validated by comparing the measured and predicted water surface elevations. The distribution of the composite suitability index predicted by the ANFIS model was compared with that using the habitat suitability curves. The comparisons reveal that the two distributions are similar for various flows. In addition, the distribution of the composite suitability index of the Dal River is computed by the ANFIS method using monitoring data for the other watersheds, namely the Hongcheon River, the Geum River, and the Chogang Stream. The monitoring data for the Chogang Stream, correlation pattern of which was the most similar to that of the Dal River, yielded the distribution of the composite suitability index, which was very close to that obtained using data for the Dal River. This is also supported by the mean absolute percentage error for the difference in the weighted usable areas.

Original languageEnglish
Pages (from-to)502-512
Number of pages11
JournalApplied Soft Computing Journal
Volume34
DOIs
Publication statusPublished - 2015 Jun 10

Fingerprint

Rivers
Composite materials
Monitoring
Hydraulic models
Watersheds
Ecosystems
Fish
Fuzzy logic
Restoration
Artificial intelligence
Hydraulics
Neural networks
Water

All Science Journal Classification (ASJC) codes

  • Software

Cite this

@article{36efd7d287aa4da6804743c8635174d2,
title = "Prediction of composite suitability index for physical habitat simulations using the ANFIS method",
abstract = "A physical habitat simulation is a useful tool for assessing the impact of river development or restoration on river ecosystem. Conventional methods of physical habitat simulation use the habitat suitability index models and their success depends largely on how well the model reflects monitoring data. One of preferred habitat suitability index models is habitat suitability curves, which are normally constructed based on monitoring data. However, these curves can easily be affected by the subjective opinion of the expert. This study introduces the ANFIS method for predicting the composite suitability index for use in physical habitat simulations. The ANFIS method is a hybrid type of artificial intelligence technique that combines the artificial neural network and fuzzy logic. The method is known to be a powerful approach especially for developing nonlinear relationships between input and output datasets. In this study, the ANFIS method was used to predict the composite suitability index for the physical habitat simulation of a 2.5 km long reach of the Dal River in Korea. Zacco platypus was chosen as the target fish of the study area. A 2D hydraulic simulation was performed, and the hydraulic model was validated by comparing the measured and predicted water surface elevations. The distribution of the composite suitability index predicted by the ANFIS model was compared with that using the habitat suitability curves. The comparisons reveal that the two distributions are similar for various flows. In addition, the distribution of the composite suitability index of the Dal River is computed by the ANFIS method using monitoring data for the other watersheds, namely the Hongcheon River, the Geum River, and the Chogang Stream. The monitoring data for the Chogang Stream, correlation pattern of which was the most similar to that of the Dal River, yielded the distribution of the composite suitability index, which was very close to that obtained using data for the Dal River. This is also supported by the mean absolute percentage error for the difference in the weighted usable areas.",
author = "Jung, {Sang Hwa} and Sung-Uk Choi",
year = "2015",
month = "6",
day = "10",
doi = "10.1016/j.asoc.2015.05.028",
language = "English",
volume = "34",
pages = "502--512",
journal = "Applied Soft Computing",
issn = "1568-4946",
publisher = "Elsevier BV",

}

Prediction of composite suitability index for physical habitat simulations using the ANFIS method. / Jung, Sang Hwa; Choi, Sung-Uk.

In: Applied Soft Computing Journal, Vol. 34, 10.06.2015, p. 502-512.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Prediction of composite suitability index for physical habitat simulations using the ANFIS method

AU - Jung, Sang Hwa

AU - Choi, Sung-Uk

PY - 2015/6/10

Y1 - 2015/6/10

N2 - A physical habitat simulation is a useful tool for assessing the impact of river development or restoration on river ecosystem. Conventional methods of physical habitat simulation use the habitat suitability index models and their success depends largely on how well the model reflects monitoring data. One of preferred habitat suitability index models is habitat suitability curves, which are normally constructed based on monitoring data. However, these curves can easily be affected by the subjective opinion of the expert. This study introduces the ANFIS method for predicting the composite suitability index for use in physical habitat simulations. The ANFIS method is a hybrid type of artificial intelligence technique that combines the artificial neural network and fuzzy logic. The method is known to be a powerful approach especially for developing nonlinear relationships between input and output datasets. In this study, the ANFIS method was used to predict the composite suitability index for the physical habitat simulation of a 2.5 km long reach of the Dal River in Korea. Zacco platypus was chosen as the target fish of the study area. A 2D hydraulic simulation was performed, and the hydraulic model was validated by comparing the measured and predicted water surface elevations. The distribution of the composite suitability index predicted by the ANFIS model was compared with that using the habitat suitability curves. The comparisons reveal that the two distributions are similar for various flows. In addition, the distribution of the composite suitability index of the Dal River is computed by the ANFIS method using monitoring data for the other watersheds, namely the Hongcheon River, the Geum River, and the Chogang Stream. The monitoring data for the Chogang Stream, correlation pattern of which was the most similar to that of the Dal River, yielded the distribution of the composite suitability index, which was very close to that obtained using data for the Dal River. This is also supported by the mean absolute percentage error for the difference in the weighted usable areas.

AB - A physical habitat simulation is a useful tool for assessing the impact of river development or restoration on river ecosystem. Conventional methods of physical habitat simulation use the habitat suitability index models and their success depends largely on how well the model reflects monitoring data. One of preferred habitat suitability index models is habitat suitability curves, which are normally constructed based on monitoring data. However, these curves can easily be affected by the subjective opinion of the expert. This study introduces the ANFIS method for predicting the composite suitability index for use in physical habitat simulations. The ANFIS method is a hybrid type of artificial intelligence technique that combines the artificial neural network and fuzzy logic. The method is known to be a powerful approach especially for developing nonlinear relationships between input and output datasets. In this study, the ANFIS method was used to predict the composite suitability index for the physical habitat simulation of a 2.5 km long reach of the Dal River in Korea. Zacco platypus was chosen as the target fish of the study area. A 2D hydraulic simulation was performed, and the hydraulic model was validated by comparing the measured and predicted water surface elevations. The distribution of the composite suitability index predicted by the ANFIS model was compared with that using the habitat suitability curves. The comparisons reveal that the two distributions are similar for various flows. In addition, the distribution of the composite suitability index of the Dal River is computed by the ANFIS method using monitoring data for the other watersheds, namely the Hongcheon River, the Geum River, and the Chogang Stream. The monitoring data for the Chogang Stream, correlation pattern of which was the most similar to that of the Dal River, yielded the distribution of the composite suitability index, which was very close to that obtained using data for the Dal River. This is also supported by the mean absolute percentage error for the difference in the weighted usable areas.

UR - http://www.scopus.com/inward/record.url?scp=84930663002&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84930663002&partnerID=8YFLogxK

U2 - 10.1016/j.asoc.2015.05.028

DO - 10.1016/j.asoc.2015.05.028

M3 - Article

VL - 34

SP - 502

EP - 512

JO - Applied Soft Computing

JF - Applied Soft Computing

SN - 1568-4946

ER -