Prediction of surface temperature rise of ultrasonic diagnostic array transducers

Won Suk Ohm, Jeong Hwan Kim, Eun Chul Kim

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

Temperature rise at the surface of an ultra-sound transducer used for diagnostic imaging is an important factor in patient safety and regulatory compliance. This paper presents a semianalytical model that is derived from first principles of heat transfer and is simple enough to be implemented in a commercial ultrasound scanner for real-time forecasting of transducer surface temperature. For modeling purposes, one-dimensional array transducers radiating into still air are considered. Promising experimental verification data are shown and practical implementation benefits of the model for thermal design and management of ultrasonic array transducers are discussed. In particular, the reduction in the amount of thermal characterization data required, compared to empirical models, shows promise.

Original languageEnglish
Article number4454308
Pages (from-to)125-135
Number of pages11
JournalIEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
Volume55
Issue number1
DOIs
Publication statusPublished - 2008 Jan

All Science Journal Classification (ASJC) codes

  • Instrumentation
  • Acoustics and Ultrasonics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Prediction of surface temperature rise of ultrasonic diagnostic array transducers'. Together they form a unique fingerprint.

Cite this