Abstract
In this work, a study regarding removal of O2 from post-combustion flue gas using polymer membrane for CO2 capture has been performed. A facilitated transport hollow fiber membrane was prepared and the morphology was examined by scanning electron microscope to understand the correlation of the morphology with the permeation of the membrane. Chemical characterizations of the membranes were conducted by Attenuated total reflectance Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy analysis. The effects of the parameters involved in the spinning procedure of polyethersulfone hollow fiber, poly(n-butyl methacrylate) layer deposition, and cobalt tetraphenylporphyrin complex selective composite membranes were investigated. As a result, the maximum ideal gas selectivities for O2/N2 and O2/CO2 were achieved at 3.2 and 1.17, respectively, at a pressure of 0.098 bar, with a considerably high O2 permeance of 17 GPU for a M4 membrane. This membrane showed facilitated oxygen transport with nitrogen and carbon dioxide at low pressure. The convinced changes in the polymer morphology and separation performance data were evaluated to single gas permeation. Obtained results are useful to develop this membrane further for oxygen removal from flue gas in the area of CO2 capture and storage as a pretreatment process for prevention of the degradation of CO2 absorbents.
Original language | English |
---|---|
Pages (from-to) | 1008-1016 |
Number of pages | 9 |
Journal | Journal of Cleaner Production |
Volume | 133 |
DOIs | |
Publication status | Published - 2016 Oct 1 |
Fingerprint
All Science Journal Classification (ASJC) codes
- Renewable Energy, Sustainability and the Environment
- Environmental Science(all)
- Strategy and Management
- Industrial and Manufacturing Engineering
Cite this
}
Preparation of facilitated transport hollow fiber membrane for gas separation using cobalt tetraphenylporphyrin complex as a coating material. / Choi, Wook; Ingole, Pravin G.; Li, Hui; Kim, Jong Hak; Lee, Hyung Keun; Baek, Il Hyun.
In: Journal of Cleaner Production, Vol. 133, 01.10.2016, p. 1008-1016.Research output: Contribution to journal › Article
TY - JOUR
T1 - Preparation of facilitated transport hollow fiber membrane for gas separation using cobalt tetraphenylporphyrin complex as a coating material
AU - Choi, Wook
AU - Ingole, Pravin G.
AU - Li, Hui
AU - Kim, Jong Hak
AU - Lee, Hyung Keun
AU - Baek, Il Hyun
PY - 2016/10/1
Y1 - 2016/10/1
N2 - In this work, a study regarding removal of O2 from post-combustion flue gas using polymer membrane for CO2 capture has been performed. A facilitated transport hollow fiber membrane was prepared and the morphology was examined by scanning electron microscope to understand the correlation of the morphology with the permeation of the membrane. Chemical characterizations of the membranes were conducted by Attenuated total reflectance Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy analysis. The effects of the parameters involved in the spinning procedure of polyethersulfone hollow fiber, poly(n-butyl methacrylate) layer deposition, and cobalt tetraphenylporphyrin complex selective composite membranes were investigated. As a result, the maximum ideal gas selectivities for O2/N2 and O2/CO2 were achieved at 3.2 and 1.17, respectively, at a pressure of 0.098 bar, with a considerably high O2 permeance of 17 GPU for a M4 membrane. This membrane showed facilitated oxygen transport with nitrogen and carbon dioxide at low pressure. The convinced changes in the polymer morphology and separation performance data were evaluated to single gas permeation. Obtained results are useful to develop this membrane further for oxygen removal from flue gas in the area of CO2 capture and storage as a pretreatment process for prevention of the degradation of CO2 absorbents.
AB - In this work, a study regarding removal of O2 from post-combustion flue gas using polymer membrane for CO2 capture has been performed. A facilitated transport hollow fiber membrane was prepared and the morphology was examined by scanning electron microscope to understand the correlation of the morphology with the permeation of the membrane. Chemical characterizations of the membranes were conducted by Attenuated total reflectance Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy analysis. The effects of the parameters involved in the spinning procedure of polyethersulfone hollow fiber, poly(n-butyl methacrylate) layer deposition, and cobalt tetraphenylporphyrin complex selective composite membranes were investigated. As a result, the maximum ideal gas selectivities for O2/N2 and O2/CO2 were achieved at 3.2 and 1.17, respectively, at a pressure of 0.098 bar, with a considerably high O2 permeance of 17 GPU for a M4 membrane. This membrane showed facilitated oxygen transport with nitrogen and carbon dioxide at low pressure. The convinced changes in the polymer morphology and separation performance data were evaluated to single gas permeation. Obtained results are useful to develop this membrane further for oxygen removal from flue gas in the area of CO2 capture and storage as a pretreatment process for prevention of the degradation of CO2 absorbents.
UR - http://www.scopus.com/inward/record.url?scp=84988799870&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84988799870&partnerID=8YFLogxK
U2 - 10.1016/j.jclepro.2016.06.031
DO - 10.1016/j.jclepro.2016.06.031
M3 - Article
AN - SCOPUS:84988799870
VL - 133
SP - 1008
EP - 1016
JO - Journal of Cleaner Production
JF - Journal of Cleaner Production
SN - 0959-6526
ER -