Abstract
A pricing-based distributed spectrum access technique for cognitive radio (CR) networks which adopt the geolocation database (GD) is proposed. The GD contains which frequency bands are occupied by the primary system in a particular location. Given that multiple CR systems may attempt to transmit data over the same frequency band when the GD is used, the achievable rate of the CR systems becomes deteriorated due to interference. In the proposed technique, each (secondary) CR system determines whether it utilises vacant frequency bands by considering the cost of using them, which is calculated by taking into account the interference. The authors analyse the behaviour of the CR systems based on game theory. In particular, it is shown that the sum capacity of CR systems is maximised when the number of utilised bands is proportional to the relative channel gain with respect to the average channel gain at each CR system. In addition, the authors obtain the optimal cost for the vacant bands, which achieves the maximum sum capacity of CR systems. Finally, it is shown that the sum capacity of the (secondary) CR systems is significantly improved via proper pricing policy on the vacant frequency bands through extensive computer simulations.
Original language | English |
---|---|
Pages (from-to) | 733-738 |
Number of pages | 6 |
Journal | IET Communications |
Volume | 11 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2017 Mar 30 |
Bibliographical note
Funding Information:This research was supported in part by the National GNSS Research Center programme of Defense Acquisition Program Administration and Agency for Defense Developmentin and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2015R1D1A1A01057529).
Publisher Copyright:
© The Institution of Engineering and Technology.
All Science Journal Classification (ASJC) codes
- Computer Science Applications
- Electrical and Electronic Engineering