Probing neural tissue with airy light-sheet microscopy: Investigation of imaging performance at depth within turbid media

Jonathan Nylk, Kaley McCluskey, Sanya Aggarwal, Javier A. Tello, Kishan Dholakia

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Light-sheet microscopy (LSM) has received great interest for fluorescent imaging applications in biomedicine as it facilitates three-dimensional visualisation of large sample volumes with high spatiotemporal resolution whilst minimising irradiation of, and photo-damage to the specimen. Despite these advantages, LSM can only visualize superficial layers of turbid tissues, such as mammalian neural tissue. Propagation-invariant light modes have played a key role in the development of high-resolution LSM techniques as they overcome the natural divergence of a Gaussian beam, enabling uniform and thin light-sheets over large distances. Most notably, Bessel and Airy beam-based light-sheet imaging modalities have been demonstrated. In the single-photon excitation regime and in lightly scattering specimens, Airy-LSM has given competitive performance with advanced Bessel-LSM techniques. Airy and Bessel beams share the property of self-healing, the ability of the beam to regenerate its transverse beam profile after propagation around an obstacle. Bessel-LSM techniques have been shown to increase the penetration-depth of the illumination into turbid specimens but this effect has been understudied in biologically relevant tissues, particularly for Airy beams. It is expected that Airy-LSM will give a similar enhancement over Gaussian-LSM. In this paper, we report on the comparison of Airy-LSM and Gaussian-LSM imaging modalities within cleared and non-cleared mouse brain tissue. In particular, we examine image quality versus tissue depth by quantitative spatial Fourier analysis of neural structures in virally transduced fluorescent tissue sections, showing a three-fold enhancement at 50 μm depth into non-cleared tissue with Airy-LSM. Complimentary analysis is performed by resolution measurements in bead-injected tissue sections.

Original languageEnglish
Title of host publicationThree-Dimensional and Multidimensional Microscopy
Subtitle of host publicationImage Acquisition and Processing XXIV
EditorsThomas G. Brown, Tony Wilson, Carol J. Cogswell
PublisherSPIE
ISBN (Electronic)9781510605817
DOIs
Publication statusPublished - 2017
EventThree-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XXIV 2017 - San Francisco, United States
Duration: 2017 Jan 302017 Feb 1

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume10070
ISSN (Print)1605-7422

Other

OtherThree-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XXIV 2017
Country/TerritoryUnited States
CitySan Francisco
Period17/1/3017/2/1

Bibliographical note

Funding Information:
This work was supported by awards to KD from the UK Engineering and Physical Sciences Research Council under grant EP/J01771X/1, the 'BRAINS' 600th anniversary appeal, and Dr. E. Killick. We would also like to thank The Northwood Trust and The RS Macdonald Charitable Trust for funding support (award to JAT). KD acknowledges support of a Royal Society Leverhulme Trust Senior Fellowship.

Publisher Copyright:
© 2017 SPIE.

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Atomic and Molecular Physics, and Optics
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Probing neural tissue with airy light-sheet microscopy: Investigation of imaging performance at depth within turbid media'. Together they form a unique fingerprint.

Cite this