Proton conducting membranes based on poly(vinyl chloride) graft copolymer electrolytes

Jin Kyu Choi, Yong Woo Kim, Joo Hwan Koh, Jong Hak Kim

Research output: Contribution to journalArticlepeer-review

19 Citations (Scopus)


The direct preparation of proton conducting poly(vinyl chloride) (PVC) graft copolymer electrolyte membranes using atom transfer radical polymerization (ATRP) is demonstrated. Here, direct initiation of the secondary chlorines of PVC facilitates grafting of a sulfonated monomer. A series of proton conducting graft copolymer electrolyte membranes, i.e. poly(vinyl chloride)-g-poly(styrene sulfonic acid) (PVC-g-PSSA) were prepared by ATRP using direct initiation of the secondary chlorines of PVC. The successful syntheses of graft copolymers were confirmed by 1H-NMR and FT-IR spectroscopy. The images of transmission electron microscopy (TEM) presented the well-defined microphase-separated structure of the graft copolymer electrolyte membranes. All the properties of ion exchange capacity (IEC), water uptake, and proton conductivity for the membranes continuously increased with increasing PSSA contents. The characterization of the membranes by thermal gravimetric analysis (TGA) also demonstrated their high thermal stability up to 200°C. The membranes were further crosslinked using UV irradiation after converting chlorine atoms to azide groups, as revealed by FT-IR spectroscopy. After crosslinking, water uptake significantly decreased from 207% to 84% and the tensile strength increased from 45.2 to 71.5 MPa with a marginal change of proton conductivity from 0.093 to 0.083 S cm-1, which indicates that the crosslinked PVC-g-PSSA membranes are promising candidates for proton conducting materials for fuel cell applications.

Original languageEnglish
Pages (from-to)915-921
Number of pages7
JournalPolymers for Advanced Technologies
Issue number7
Publication statusPublished - 2008 Jul

All Science Journal Classification (ASJC) codes

  • Polymers and Plastics


Dive into the research topics of 'Proton conducting membranes based on poly(vinyl chloride) graft copolymer electrolytes'. Together they form a unique fingerprint.

Cite this