Prototype-Guided Saliency Feature Learning for Person Search

Hanjae Kim, Sunghun Joung, Ig Jae Kim, Kwanghoon Sohn

Research output: Chapter in Book/Report/Conference proceedingConference contribution

14 Citations (Scopus)

Abstract

Existing person search methods integrate person detection and re-identification (re-ID) module into a unified system. Though promising results have been achieved, the misalignment problem, which commonly occurs in person search, limits the discriminative feature representation for re-ID. To overcome this limitation, we introduce a novel framework to learn the discriminative representation by utilizing prototype in OIM loss. Unlike conventional methods using prototype as a representation of person identity, we utilize it as guidance to allow the attention network to consistently highlight multiple instances across different poses. Moreover, we propose a new prototype update scheme with adaptive momentum to increase the discriminative ability across different instances. Extensive ablation experiments demonstrate that our method can significantly enhance the feature discriminative power, outperforming the state-of-the-art results on two person search benchmarks including CUHK-SYSU and PRW.

Original languageEnglish
Title of host publicationProceedings - 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021
PublisherIEEE Computer Society
Pages4863-4872
Number of pages10
ISBN (Electronic)9781665445092
DOIs
Publication statusPublished - 2021
Event2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021 - Virtual, Online, United States
Duration: 2021 Jun 192021 Jun 25

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Conference

Conference2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021
Country/TerritoryUnited States
CityVirtual, Online
Period21/6/1921/6/25

Bibliographical note

Funding Information:
Acknowledgements This research was supported by the Yonsei University Research Fund of 2021 (2021-22-0001), and R&D program for Advanced Integrated-intelligence for Identification (AIID) through the National Research Foundation of KOREA (NRF) funded by Ministry of Science and ICT (NRF-2018M3E3A1057289).

Publisher Copyright:
© 2021 IEEE

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Prototype-Guided Saliency Feature Learning for Person Search'. Together they form a unique fingerprint.

Cite this