Abstract
Existing person search methods integrate person detection and re-identification (re-ID) module into a unified system. Though promising results have been achieved, the misalignment problem, which commonly occurs in person search, limits the discriminative feature representation for re-ID. To overcome this limitation, we introduce a novel framework to learn the discriminative representation by utilizing prototype in OIM loss. Unlike conventional methods using prototype as a representation of person identity, we utilize it as guidance to allow the attention network to consistently highlight multiple instances across different poses. Moreover, we propose a new prototype update scheme with adaptive momentum to increase the discriminative ability across different instances. Extensive ablation experiments demonstrate that our method can significantly enhance the feature discriminative power, outperforming the state-of-the-art results on two person search benchmarks including CUHK-SYSU and PRW.
Original language | English |
---|---|
Title of host publication | Proceedings - 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021 |
Publisher | IEEE Computer Society |
Pages | 4863-4872 |
Number of pages | 10 |
ISBN (Electronic) | 9781665445092 |
DOIs | |
Publication status | Published - 2021 |
Event | 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021 - Virtual, Online, United States Duration: 2021 Jun 19 → 2021 Jun 25 |
Publication series
Name | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
---|---|
ISSN (Print) | 1063-6919 |
Conference
Conference | 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021 |
---|---|
Country/Territory | United States |
City | Virtual, Online |
Period | 21/6/19 → 21/6/25 |
Bibliographical note
Funding Information:Acknowledgements This research was supported by the Yonsei University Research Fund of 2021 (2021-22-0001), and R&D program for Advanced Integrated-intelligence for Identification (AIID) through the National Research Foundation of KOREA (NRF) funded by Ministry of Science and ICT (NRF-2018M3E3A1057289).
Publisher Copyright:
© 2021 IEEE
All Science Journal Classification (ASJC) codes
- Software
- Computer Vision and Pattern Recognition