Pt Nanoparticles Supported on Mesoporous CeO2 Nanostructures Obtained through Green Approach for Efficient Catalytic Performance toward Ethanol Electro-oxidation

Paskalis Sahaya Murphin Kumar, Sivakumar Thiripuranthagan, Tsubasa Imai, Gopalakrishnan Kumar, Arivalagan Pugazhendhi, Sri Ramkumar Vijayan, Rodrigo Esparza, Hideki Abe, Siva Kumar Krishnan

Research output: Contribution to journalArticlepeer-review

52 Citations (Scopus)

Abstract

In this report, an easy and green approach to the synthesis of mesoporous cerium oxide (CeO2) nanostructures and followed by supporting platinum nanoparticles (NPs) on CeO2 nanostructures (Pt/CeO2) and their application as versatile electrocatalysts for ethanol electrooxidation has been established. The synthesis of mesoporous Pt/CeO2 nanostructures involves two steps. First, mesoporous CeO2 nanostructures were synthesized via macroalgae polymer mediated approach and followed by supporting of PtNPs of ca. 5-10 nm over the mesoporous CeO2 nanostructures using seed-mediated chemical reduction process. The structural and spectroscopic characterization techniques such as transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman, X-ray photoelectron spectroscopy (XPS), and small-angle X-ray scattering (SAXS) studies confirm the strong coupling between PtNPs and the mesoporous CeO2 support resulting in the generation of more oxygen vacancies, which can facilitate the enhanced charge transport at their functional interface. Significantly, the synthesized mesoporous Pt/CeO2 nanostructures were found to show enhanced electrocatalytic activity for ethanol electrooxidation reaction. The enhanced performance is attributed to the synergistic effect of both mesoporous structure and the formation of more oxygen vacancies in the resultant Pt/CeO2 nanostructures. Our facile and eco-friendly approach to the synthesis of mesoporous CeO2 nanostructures that supports PtNPs with an excellent catalytic activity is validated as a promising strategy for potential applications in fuel cells.

Original languageEnglish
Pages (from-to)11290-11299
Number of pages10
JournalACS Sustainable Chemistry and Engineering
Volume5
Issue number12
DOIs
Publication statusPublished - 2017 Dec 4

Bibliographical note

Publisher Copyright:
© 2017 American Chemical Society.

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Environmental Chemistry
  • Chemical Engineering(all)
  • Renewable Energy, Sustainability and the Environment

Fingerprint

Dive into the research topics of 'Pt Nanoparticles Supported on Mesoporous CeO2 Nanostructures Obtained through Green Approach for Efficient Catalytic Performance toward Ethanol Electro-oxidation'. Together they form a unique fingerprint.

Cite this