Punching shear behavior of two-way concrete slabs reinforced with glass-fiber-reinforced polymer (GFRP) bars

Minkwan Ju, Kyoungsoo Park, Cheolwoo Park

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

This study investigated the punching shear behavior of full-scale, two-way concrete slabs reinforced with glass fiber reinforced polymer (GFRP) bars, which are known as noncorrosive reinforcement. The relatively low modulus of elasticity of GFRP bars affects the large deflection of flexural members, however, applying these to two-way concrete slabs can compensate the weakness of the flexural stiffness due to an arching action with supporting girders. The test results demonstrated that the two-way concrete slabs with GFRP bars satisfied the allowable deflection and crack width under the service load specified by the design specification even in the state of the minimum reinforcement ratio. Previous predicting equations and design equations largely overestimated the measured punching shear strength when the slab was supported by reinforced concrete (RC) girders. The strength difference can be explained by the fact that the flexural behavior of the supporting RC beam girders reduces the punching shear strength because of the additional deflection of RC beam girders. Therefore, for more realistic estimations of the punching shear strength of two-way concrete slabs with GFRP bars, the boundary conditions of the concrete slabs should be carefully considered. This is because the stiffness degradation of supporting RC beam girders may influence the punching shear strength.

Original languageEnglish
Article number893
JournalPolymers
Volume10
Issue number8
DOIs
Publication statusPublished - 2018 Aug 9

Fingerprint

Punching
Concrete slabs
Glass fibers
Beams and girders
Polymers
Shear strength
Reinforced concrete
Reinforcement
Concrete beams and girders
Deflection (structures)
Stiffness
Elastic moduli
fiberglass
Boundary conditions
Cracks
Specifications
Degradation

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Polymers and Plastics

Cite this

@article{63f6d8202fd84d04a71cea3c5a828b36,
title = "Punching shear behavior of two-way concrete slabs reinforced with glass-fiber-reinforced polymer (GFRP) bars",
abstract = "This study investigated the punching shear behavior of full-scale, two-way concrete slabs reinforced with glass fiber reinforced polymer (GFRP) bars, which are known as noncorrosive reinforcement. The relatively low modulus of elasticity of GFRP bars affects the large deflection of flexural members, however, applying these to two-way concrete slabs can compensate the weakness of the flexural stiffness due to an arching action with supporting girders. The test results demonstrated that the two-way concrete slabs with GFRP bars satisfied the allowable deflection and crack width under the service load specified by the design specification even in the state of the minimum reinforcement ratio. Previous predicting equations and design equations largely overestimated the measured punching shear strength when the slab was supported by reinforced concrete (RC) girders. The strength difference can be explained by the fact that the flexural behavior of the supporting RC beam girders reduces the punching shear strength because of the additional deflection of RC beam girders. Therefore, for more realistic estimations of the punching shear strength of two-way concrete slabs with GFRP bars, the boundary conditions of the concrete slabs should be carefully considered. This is because the stiffness degradation of supporting RC beam girders may influence the punching shear strength.",
author = "Minkwan Ju and Kyoungsoo Park and Cheolwoo Park",
year = "2018",
month = "8",
day = "9",
doi = "10.3390/polym10080893",
language = "English",
volume = "10",
journal = "Polymers",
issn = "2073-4360",
publisher = "MDPI AG",
number = "8",

}

Punching shear behavior of two-way concrete slabs reinforced with glass-fiber-reinforced polymer (GFRP) bars. / Ju, Minkwan; Park, Kyoungsoo; Park, Cheolwoo.

In: Polymers, Vol. 10, No. 8, 893, 09.08.2018.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Punching shear behavior of two-way concrete slabs reinforced with glass-fiber-reinforced polymer (GFRP) bars

AU - Ju, Minkwan

AU - Park, Kyoungsoo

AU - Park, Cheolwoo

PY - 2018/8/9

Y1 - 2018/8/9

N2 - This study investigated the punching shear behavior of full-scale, two-way concrete slabs reinforced with glass fiber reinforced polymer (GFRP) bars, which are known as noncorrosive reinforcement. The relatively low modulus of elasticity of GFRP bars affects the large deflection of flexural members, however, applying these to two-way concrete slabs can compensate the weakness of the flexural stiffness due to an arching action with supporting girders. The test results demonstrated that the two-way concrete slabs with GFRP bars satisfied the allowable deflection and crack width under the service load specified by the design specification even in the state of the minimum reinforcement ratio. Previous predicting equations and design equations largely overestimated the measured punching shear strength when the slab was supported by reinforced concrete (RC) girders. The strength difference can be explained by the fact that the flexural behavior of the supporting RC beam girders reduces the punching shear strength because of the additional deflection of RC beam girders. Therefore, for more realistic estimations of the punching shear strength of two-way concrete slabs with GFRP bars, the boundary conditions of the concrete slabs should be carefully considered. This is because the stiffness degradation of supporting RC beam girders may influence the punching shear strength.

AB - This study investigated the punching shear behavior of full-scale, two-way concrete slabs reinforced with glass fiber reinforced polymer (GFRP) bars, which are known as noncorrosive reinforcement. The relatively low modulus of elasticity of GFRP bars affects the large deflection of flexural members, however, applying these to two-way concrete slabs can compensate the weakness of the flexural stiffness due to an arching action with supporting girders. The test results demonstrated that the two-way concrete slabs with GFRP bars satisfied the allowable deflection and crack width under the service load specified by the design specification even in the state of the minimum reinforcement ratio. Previous predicting equations and design equations largely overestimated the measured punching shear strength when the slab was supported by reinforced concrete (RC) girders. The strength difference can be explained by the fact that the flexural behavior of the supporting RC beam girders reduces the punching shear strength because of the additional deflection of RC beam girders. Therefore, for more realistic estimations of the punching shear strength of two-way concrete slabs with GFRP bars, the boundary conditions of the concrete slabs should be carefully considered. This is because the stiffness degradation of supporting RC beam girders may influence the punching shear strength.

UR - http://www.scopus.com/inward/record.url?scp=85054936091&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85054936091&partnerID=8YFLogxK

U2 - 10.3390/polym10080893

DO - 10.3390/polym10080893

M3 - Article

AN - SCOPUS:85054936091

VL - 10

JO - Polymers

JF - Polymers

SN - 2073-4360

IS - 8

M1 - 893

ER -