Quant-PIM: An Energy-Efficient Processing-in-Memory Accelerator for Layerwise Quantized Neural Networks

Young Seo Lee, Eui Young Chung, Young Ho Gong, Sung Woo Chung

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)


Layerwise quantized neural networks (QNNs), which adopt different precisions for weights or activations in a layerwise manner, have emerged as a promising approach for embedded systems. The layerwise QNNs deploy only required number of data bits for the computation (e.g., convolution of weights and activations), which in turn reduces computation energy compared to the conventional QNNs. However, the layerwise QNNs still cause a large amount of energy in the conventional memory systems, since memory accesses are not optimized for the required precision of each layer. To address this problem, we propose Quant-PIM, an energy-efficient processing-in-memory (PIM) accelerator for layerwise QNNs. Quant-PIM selectively reads only required data bits within a data word depending on the precision, by deploying the modified I/O gating logics in a 3-D stacked memory. Thus, Quant-PIM significantly reduces energy consumption for memory accesses. In addition, Quant-PIM improves the performance of layerwise QNNs. When the required precision is half of the weight (or activation) size or less, Quant-PIM reads two data blocks in a single read operation by exploiting the saved memory bandwidth from the selective memory access, thus providing higher compute-throughput. Our simulation results show that Quant-PIM reduces system energy by 39.1%50.4% compared to the PIM system with 16-bit quantized precision, without accuracy loss.

Original languageEnglish
Pages (from-to)162-165
Number of pages4
JournalIEEE Embedded Systems Letters
Issue number4
Publication statusPublished - 2021 Dec 1

Bibliographical note

Funding Information:
This work was supported in part by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIT) under Grant 2020R1A2C2003500; in part by Samsung Electronics; and in part by the College of Information, Korea University.

Publisher Copyright:
© 2009-2012 IEEE.

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Computer Science(all)


Dive into the research topics of 'Quant-PIM: An Energy-Efficient Processing-in-Memory Accelerator for Layerwise Quantized Neural Networks'. Together they form a unique fingerprint.

Cite this