Quantitative Comparison of Kinetic Stabilities of Metallomacroycle-Based Rotaxane

Chang S.-Y., Jang H.-Y, Kyu-Sung Jeong

Research output: Contribution to journalArticle

38 Citations (Scopus)

Abstract

Four mononuclear metallomacrocycles with identical cavities but different transition metals (OsVI, PdII, PtII, and ReI) were prepared. With these metallomacrocycles, the corresponding rotaxanes 2-Os, 2-Pd, 2-Pt, and 2-Re were self-assembled by hydrogen-bonding interactions. The kinetic stabilities of the rotaxanes were determined quantitatively and compared with each other by 1H NMR spectroscopic techniques, including two-dimensional exchange spectroscopy (2D-EXSY) experiments. The activation free energies (ΔG≠) for the exchange between the rotaxanes 2-Os, 2-Pd and 2-Pt and their free components were determined to be 15.5, 16.0, and 16.4 kcal mol−1, respectively. These magnitudes imply that the rotaxanes 2-Os, 2-Pd and 2-Pt are kinetically labile at room temperature and exist only as equilibrium mixtures with free components in solution. In contrast, the rotaxane 2-Re is kinetically stable enough to be isolated in pure form by silica gel chromatography under ordinary laboratory conditions. However, at higher temperatures (>60 °C) 2-Re was slowly disassembled into its components until the equilibrium was established. The rate constants were measured at three different temperatures, and the Eyring plot yielded the activation enthalpy ΔH≠=35 kcal mol−1 and the activation entropy ΔS≠=27 eu for the disassembly of the rotaxane 2-Re in Cl2CDCDCl2. These thermodynamic parameters gave the activation free energy ΔGequation image=27.1 kcal mol−1 at 25 °C. Consequently, 2-Re is one example of a novel metallomacrocycle-based rotaxane that contains a coordination bond with enough strength to allow both for isolation in pure form around room temperature and for self-assembly at higher temperatures.
Original languageEnglish
Pages (from-to)1535-1541
Number of pages7
JournalChemistry - A European Journal
Volume9
Issue number7
DOIs
Publication statusPublished - 2003 Apr 4

Fingerprint Dive into the research topics of 'Quantitative Comparison of Kinetic Stabilities of Metallomacroycle-Based Rotaxane'. Together they form a unique fingerprint.

  • Cite this