Abstract
The optimal number of clusters (K) differs depending on the radio remote head (RRH) density. This paper verifies that the K values cannot be met by the conventional affinity propagation (AP) clustering algorithm. In an ultra-dense network (UDN) environment, the density of RRH is a very important factor for the bender because it is directly related to the cost of configuring the wireless communication network. Likewise, in order to provide the optimal communication environment to the user in the UDN environment, it is necessary to enable flexible clustering according to changing channel environment by utilizing semi-dynamic clustering technology. As a result, we propose an AP algorithm that finds a better K value than the conventional method. To this end, the proposed algorithm additionally utilizes a non-coordinated multi-point (CoMP) interference power that varies depending on the RRH density, user position, and the variations in propagation channel. The simulation results show that the proposed algorithm shows a better average capacity than the conventional algorithm.
Original language | English |
---|---|
Title of host publication | 2019 IEEE 90th Vehicular Technology Conference, VTC 2019 Fall - Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
ISBN (Electronic) | 9781728112206 |
DOIs | |
Publication status | Published - 2019 Sept |
Event | 90th IEEE Vehicular Technology Conference, VTC 2019 Fall - Honolulu, United States Duration: 2019 Sept 22 → 2019 Sept 25 |
Publication series
Name | IEEE Vehicular Technology Conference |
---|---|
Volume | 2019-September |
ISSN (Print) | 1550-2252 |
Conference
Conference | 90th IEEE Vehicular Technology Conference, VTC 2019 Fall |
---|---|
Country/Territory | United States |
City | Honolulu |
Period | 19/9/22 → 19/9/25 |
Bibliographical note
Publisher Copyright:© 2019 IEEE.
All Science Journal Classification (ASJC) codes
- Computer Science Applications
- Electrical and Electronic Engineering
- Applied Mathematics