Abstract
Skyline queries have gained attention as an effective way to identify desirable objects that are "not dominated" by another object in the dataset. From market perspective, such objects are favored as pareto-optimal choices, as each of such objects has at least one competitive edge against all other objects, or not dominated. In other words, non-skyline objects have room for pareto-optimal improvements for more favorable positioning in the market. The goal of this paper is, for such non-skyline objects, to identify the cost-minimal pareto-optimal improvement strategy. More specifically, we abstract this problem as a mixed integer programming problem and develop a novel algorithm for efficiently identifying the optimal solution. In addition, the problem can be reversed to identify, for a skyline product, top-k threats that can be competitors after pareto-optimal improvements with the k lowest costs. Through extensive experiments using synthetic and real-life datasets, we show that our proposed framework is both efficient and scalable.
Original language | English |
---|---|
Pages (from-to) | 127-150 |
Number of pages | 24 |
Journal | Distributed and Parallel Databases |
Volume | 26 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2009 Aug |
Bibliographical note
Funding Information:This work was supported by Microsoft Research Asia (Internet Services Theme). This work is based on and significantly extends our preliminary work “Escaping a Dominance Region at Minimum Cost” published in DEXA 2008 (see Sect. 2).
All Science Journal Classification (ASJC) codes
- Software
- Information Systems
- Hardware and Architecture
- Information Systems and Management