Abstract
Coating oxides with conductive carbon is a widely used strategy to improve the rate capability of oxides by enhancing their electronic conductivity. However, there is a growing concern that a carbon layer may hinder lithium-ion transport to oxides, thus limiting the rate capability. Nonetheless, this issue has not yet been thoroughly investigated, and whether lithium-ion transport across a carbon layer does indeed limit the rate capability remains unclear. To single out the effect of lithium-ion transport across a carbon layer on the rate capability, we propose the rational design and synthesis of nano-perforated graphene (NPG)-wrapped oxide composites using commercial Li4Ti5O12 (LTO) and LiFePO4 (both with a particle diameter of ∼70 nm), wherein the NPG has nano-perforations on the basal plane of graphene. As the number of nano-perforations in the composites increases, the rate capability significantly increases. For example, NPG-wrapped LTO shows a specific capacity of 117.9 mA h g-1 at 100C and could be stably charged-discharged even at 300C. The excellent rate capability is mainly due to the enhancement of lithium-ion transport through the nano-perforations of NPG. Cyclic voltammetry and impedance analyses reveal that the improved rate capability of NPG-wrapped LTO is closely associated with an increase in the area of electrochemically active sites of LTO in the composite due to the enhanced lithium-ion transport through the nano-perforations of NPG, indicating that lithium-ion transport across a carbon layer could limit the rate capability of oxides coated with highly conductive carbon. These salient results will provide further impetus to the design and synthesis of novel high-rate carbon-coated oxides.
Original language | English |
---|---|
Pages (from-to) | 6033-6044 |
Number of pages | 12 |
Journal | Journal of Materials Chemistry A |
Volume | 6 |
Issue number | 14 |
DOIs | |
Publication status | Published - 2018 Apr 14 |
Bibliographical note
Funding Information:This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20172420108590). This work was also supported by Energy Efficiency & Resources program of the Korea Institute of Energy Technology Evaluation Planning (KETEP), and was granted financial resources from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20152020105770).
Publisher Copyright:
© 2018 The Royal Society of Chemistry.
All Science Journal Classification (ASJC) codes
- Chemistry(all)
- Renewable Energy, Sustainability and the Environment
- Materials Science(all)