Real-time monitoring of live mycobacteria with a microfluidic acoustic-Raman platform

Vincent O. Baron, Mingzhou Chen, Björn Hammarstrom, Robert J.H. Hammond, Peter Glynne-Jones, Stephen H. Gillespie, Kishan Dholakia

Research output: Contribution to journalArticle

Abstract

Tuberculosis (TB) remains a leading cause of death worldwide. Lipid rich, phenotypically antibiotic tolerant, bacteria are more resistant to antibiotics and may be responsible for relapse and the need for long-term TB treatment. We present a microfluidic system that acoustically traps live mycobacteria, M. smegmatis, a model organism for M. tuberculosis. We then perform optical analysis in the form of wavelength modulated Raman spectroscopy (WMRS) on the trapped M. smegmatis for up to eight hours, and also in the presence of isoniazid (INH). The Raman fingerprints of M. smegmatis exposed to INH change substantially in comparison to the unstressed condition. Our work provides a real-time assessment of the impact of INH on the increase of lipids in these mycobacteria, which could render the cells more tolerant to antibiotics. This microfluidic platform may be used to study any microorganism and to dynamically monitor its response to different conditions and stimuli.

Original languageEnglish
Article number236
JournalCommunications Biology
Volume3
Issue number1
DOIs
Publication statusPublished - 2020 Dec 1

All Science Journal Classification (ASJC) codes

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • Medicine (miscellaneous)

Fingerprint Dive into the research topics of 'Real-time monitoring of live mycobacteria with a microfluidic acoustic-Raman platform'. Together they form a unique fingerprint.

  • Cite this

    Baron, V. O., Chen, M., Hammarstrom, B., Hammond, R. J. H., Glynne-Jones, P., Gillespie, S. H., & Dholakia, K. (2020). Real-time monitoring of live mycobacteria with a microfluidic acoustic-Raman platform. Communications Biology, 3(1), [236]. https://doi.org/10.1038/s42003-020-0915-3