Abstract
Flexible tactile sensors capable of measuring mechanical stimuli via physical contact have attracted significant attention in the field of human-interactive systems. The utilization of tactile information can complement vision and/or sound interaction and provide new functionalities. Recent advancements in micro/nanotechnology, material science, and information technology have resulted in the development of high-performance tactile sensors that reach and even surpass the tactile sensing ability of human skin. Here, important advances in flexible tactile sensors over recent years are summarized, from sensor designs to system-level applications. This review focuses on the representative strategies based on design and material configurations for improving key performance parameters including sensitivity, detection range/linearity, response time/hysteresis, spatial resolution/crosstalk, multidirectional force detection, and insensitivity to other stimuli. System-level integration for practical applications beyond conceptual prototypes and promising applications, such as artificial electronic skin for robotics and prosthetics, wearable controllers for electronics, and bidirectional communication tools, are also discussed. Finally, perspectives on issues regarding further advances are provided.
Original language | English |
---|---|
Article number | 2005902 |
Journal | Advanced Materials |
Volume | 33 |
Issue number | 47 |
DOIs | |
Publication status | Published - 2021 Nov 25 |
Bibliographical note
Funding Information:S.P. and J.L. contributed equally to this work. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2018R1A4A1025986).
Publisher Copyright:
© 2021 Wiley-VCH GmbH.
All Science Journal Classification (ASJC) codes
- Materials Science(all)
- Mechanics of Materials
- Mechanical Engineering