Reconfigurable plug-and-play assembly for the continuous production of composite anodes for modulating lithium storage

Jiseok Lim, Jungho Hwang, Jeong Hoon Byeon

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

In this study, modulating lithium storage is achieved as a result of the built-to-order assembly of composite anodes by the serial connection of reconfigurable plug-and-play devices in an ambient atmosphere. In this assembly, spark ablation, mechanical spraying, and ultraviolet exposure devices are connected in series, as well as the turning of devices, under a continuous air flow, affording composite anodes in less than 15 s. Specifically, SnO2 nanoparticles prepared from spark ablation are carried by air flow, and the flow is injected into a mechanical spray system to generate carbon nanotube–graphene nanosheet/polyaniline slurry droplets, where SnO2 nanoparticles are inserted into the droplets via gas pressurization at the spray nozzle. Subsequently, the droplets are passed through a 254-nm ultraviolet lamp and a silica–gel–installed hollow tube for dynamic stiffening and drying to form SnO2-carbon nanotube–graphene nanosheet/polyaniline composites in a single-pass air flow. In addition, different composites such as SnO2-carbon nanotube (or graphene nanosheet)/polyaniline, SnO2–CuO-carbon nanotube–graphene nanosheet/polyaniline, and SnO2–Co3O4-carbon nanotube–graphene nanosheet/polyaniline are conveniently assembled by the reconfiguration of metal oxide nanoparticles or carbon/polymer slurries in the plug-and-play operation. These composites are suitable as anodes for lithium storage and enabled the modulation of specific capacities, rate capabilities, and cyclabilities by employing different architectures.

Original languageEnglish
Pages (from-to)485-492
Number of pages8
JournalChemical Engineering Journal
Volume364
DOIs
Publication statusPublished - 2019 May 15

Bibliographical note

Funding Information:
This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP) (No. 2015R1A5A1037668 ).

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Environmental Chemistry
  • Chemical Engineering(all)
  • Industrial and Manufacturing Engineering

Fingerprint Dive into the research topics of 'Reconfigurable plug-and-play assembly for the continuous production of composite anodes for modulating lithium storage'. Together they form a unique fingerprint.

Cite this