Redox Additive-Improved Electrochemically and Structurally Robust Binder-Free Nickel Pyrophosphate Nanorods as Superior Cathode for Hybrid Supercapacitors

Kalimuthu Vijaya Sankar, Youngho Seo, Su Chan Lee, Seong Chan Jun

Research output: Contribution to journalArticle

19 Citations (Scopus)

Abstract

For several decades, one of the great challenges for constructing a high-energy supercapacitor has been designing electrode materials with high performance. Herein, we report for the first time to our knowledge a novel hybrid supercapacitor composed of battery-type nickel pyrophosphate one-dimensional (1D) nanorods and capacitive-type N-doped reduced graphene oxide as the cathode and anode, respectively, in an aqueous redox-added electrolyte. More importantly, ex situ microscopic images of the nickel pyrophosphate 1D nanorods revealed that the presence of the battery-type redox additive enhanced the charge storage capacity and cycling life as a result of the microstructure stability. The nickel pyrophosphate 1D nanorods exhibited their maximum specific capacitance (8120 mF cm-2 at 5 mV s-1) and energy density (0.22 mWh cm-2 at a power density of 1.375 mW cm-2) in 1 M KOH + 75 mg K3[Fe(CN)6] electrolyte. On the other side, the N-doped reduced graphene oxide delivered an excellent electrochemical performance, demonstrating that it was an appropriate anode. A hybrid supercapacitor showed a high specific capacitance (224 F g-1 at a current density of 1 A g-1) and high energy density (70 Wh kg-1 at a power density of 750 W kg-1), as well as a long cycle life (a Coulombic efficiency of 96% over 5000 cycles), which was a higher performance than most of those in recent reports. Our results suggested that the materials and redox additive in this novel design hold great promise for potential applications in a next-generation hybrid supercapacitor.

Original languageEnglish
Pages (from-to)8045-8056
Number of pages12
JournalACS Applied Materials and Interfaces
Volume10
Issue number9
DOIs
Publication statusPublished - 2018 Mar 7

Fingerprint

Nickel
Nanorods
Binders
Cathodes
Graphite
Oxides
Graphene
Electrolytes
Anodes
Capacitance
Life cycle
Current density
Microstructure
Electrodes
Supercapacitor
diphosphoric acid
Oxidation-Reduction

All Science Journal Classification (ASJC) codes

  • Materials Science(all)

Cite this

@article{5e44d89bebbf4846a863dc341a2fba52,
title = "Redox Additive-Improved Electrochemically and Structurally Robust Binder-Free Nickel Pyrophosphate Nanorods as Superior Cathode for Hybrid Supercapacitors",
abstract = "For several decades, one of the great challenges for constructing a high-energy supercapacitor has been designing electrode materials with high performance. Herein, we report for the first time to our knowledge a novel hybrid supercapacitor composed of battery-type nickel pyrophosphate one-dimensional (1D) nanorods and capacitive-type N-doped reduced graphene oxide as the cathode and anode, respectively, in an aqueous redox-added electrolyte. More importantly, ex situ microscopic images of the nickel pyrophosphate 1D nanorods revealed that the presence of the battery-type redox additive enhanced the charge storage capacity and cycling life as a result of the microstructure stability. The nickel pyrophosphate 1D nanorods exhibited their maximum specific capacitance (8120 mF cm-2 at 5 mV s-1) and energy density (0.22 mWh cm-2 at a power density of 1.375 mW cm-2) in 1 M KOH + 75 mg K3[Fe(CN)6] electrolyte. On the other side, the N-doped reduced graphene oxide delivered an excellent electrochemical performance, demonstrating that it was an appropriate anode. A hybrid supercapacitor showed a high specific capacitance (224 F g-1 at a current density of 1 A g-1) and high energy density (70 Wh kg-1 at a power density of 750 W kg-1), as well as a long cycle life (a Coulombic efficiency of 96{\%} over 5000 cycles), which was a higher performance than most of those in recent reports. Our results suggested that the materials and redox additive in this novel design hold great promise for potential applications in a next-generation hybrid supercapacitor.",
author = "Sankar, {Kalimuthu Vijaya} and Youngho Seo and Lee, {Su Chan} and Jun, {Seong Chan}",
year = "2018",
month = "3",
day = "7",
doi = "10.1021/acsami.7b19357",
language = "English",
volume = "10",
pages = "8045--8056",
journal = "ACS applied materials & interfaces",
issn = "1944-8244",
publisher = "American Chemical Society",
number = "9",

}

Redox Additive-Improved Electrochemically and Structurally Robust Binder-Free Nickel Pyrophosphate Nanorods as Superior Cathode for Hybrid Supercapacitors. / Sankar, Kalimuthu Vijaya; Seo, Youngho; Lee, Su Chan; Jun, Seong Chan.

In: ACS Applied Materials and Interfaces, Vol. 10, No. 9, 07.03.2018, p. 8045-8056.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Redox Additive-Improved Electrochemically and Structurally Robust Binder-Free Nickel Pyrophosphate Nanorods as Superior Cathode for Hybrid Supercapacitors

AU - Sankar, Kalimuthu Vijaya

AU - Seo, Youngho

AU - Lee, Su Chan

AU - Jun, Seong Chan

PY - 2018/3/7

Y1 - 2018/3/7

N2 - For several decades, one of the great challenges for constructing a high-energy supercapacitor has been designing electrode materials with high performance. Herein, we report for the first time to our knowledge a novel hybrid supercapacitor composed of battery-type nickel pyrophosphate one-dimensional (1D) nanorods and capacitive-type N-doped reduced graphene oxide as the cathode and anode, respectively, in an aqueous redox-added electrolyte. More importantly, ex situ microscopic images of the nickel pyrophosphate 1D nanorods revealed that the presence of the battery-type redox additive enhanced the charge storage capacity and cycling life as a result of the microstructure stability. The nickel pyrophosphate 1D nanorods exhibited their maximum specific capacitance (8120 mF cm-2 at 5 mV s-1) and energy density (0.22 mWh cm-2 at a power density of 1.375 mW cm-2) in 1 M KOH + 75 mg K3[Fe(CN)6] electrolyte. On the other side, the N-doped reduced graphene oxide delivered an excellent electrochemical performance, demonstrating that it was an appropriate anode. A hybrid supercapacitor showed a high specific capacitance (224 F g-1 at a current density of 1 A g-1) and high energy density (70 Wh kg-1 at a power density of 750 W kg-1), as well as a long cycle life (a Coulombic efficiency of 96% over 5000 cycles), which was a higher performance than most of those in recent reports. Our results suggested that the materials and redox additive in this novel design hold great promise for potential applications in a next-generation hybrid supercapacitor.

AB - For several decades, one of the great challenges for constructing a high-energy supercapacitor has been designing electrode materials with high performance. Herein, we report for the first time to our knowledge a novel hybrid supercapacitor composed of battery-type nickel pyrophosphate one-dimensional (1D) nanorods and capacitive-type N-doped reduced graphene oxide as the cathode and anode, respectively, in an aqueous redox-added electrolyte. More importantly, ex situ microscopic images of the nickel pyrophosphate 1D nanorods revealed that the presence of the battery-type redox additive enhanced the charge storage capacity and cycling life as a result of the microstructure stability. The nickel pyrophosphate 1D nanorods exhibited their maximum specific capacitance (8120 mF cm-2 at 5 mV s-1) and energy density (0.22 mWh cm-2 at a power density of 1.375 mW cm-2) in 1 M KOH + 75 mg K3[Fe(CN)6] electrolyte. On the other side, the N-doped reduced graphene oxide delivered an excellent electrochemical performance, demonstrating that it was an appropriate anode. A hybrid supercapacitor showed a high specific capacitance (224 F g-1 at a current density of 1 A g-1) and high energy density (70 Wh kg-1 at a power density of 750 W kg-1), as well as a long cycle life (a Coulombic efficiency of 96% over 5000 cycles), which was a higher performance than most of those in recent reports. Our results suggested that the materials and redox additive in this novel design hold great promise for potential applications in a next-generation hybrid supercapacitor.

UR - http://www.scopus.com/inward/record.url?scp=85043341110&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85043341110&partnerID=8YFLogxK

U2 - 10.1021/acsami.7b19357

DO - 10.1021/acsami.7b19357

M3 - Article

AN - SCOPUS:85043341110

VL - 10

SP - 8045

EP - 8056

JO - ACS applied materials & interfaces

JF - ACS applied materials & interfaces

SN - 1944-8244

IS - 9

ER -