TY - JOUR
T1 - Redox-degradable biocompatible hyperbranched polyglycerols
T2 - Synthesis, copolymerization kinetics, degradation, and biocompatibility
AU - Son, Suhyun
AU - Shin, Eeseul
AU - Kim, Byeong Su
N1 - Publisher Copyright:
© 2015 American Chemical Society.
Copyright:
Copyright 2015 Elsevier B.V., All rights reserved.
PY - 2015/2/10
Y1 - 2015/2/10
N2 - Polymers that are biocompatible and degrade in response to stimuli are highly desirable as smart drug-delivery carriers. We report the first novel redox-degradable hyperbranched polyglycerols. A glycerol monomer containing a disulfide bond, i.e., 2-((2-(oxiran-2-ylmethoxy)ethyl)disulfanyl)ethan-1-ol (SSG), was designed and polymerized through anionic ring-opening multibranching polymerization to yield a series of redox-degradable hyperbranched polyglycerols (PSSGs) with controlled molecular weights (2000-11 000 g/mol) and relatively low molecular weight distributions (Mw/Mn < 1.15). In addition, copolymerization with a nondegradable glycerol (G) monomer provided P(G-co-SSG) copolymers, which contained an adjustable fraction of degradable moieties within their polyglycerol backbones. The polymerization was characterized using 1H and 13C NMR spectroscopy, GPC, and MALDI-ToF mass spectrometry. The copolymerization process was also evaluated using quantitative in situ 13C NMR kinetic measurements in bulk, which revealed that the reaction kinetics of G were faster than those of the SSG monomer, leading to a gradient during the copolymerization process. Furthermore, we explored the redox-responsive degradation of the polymers upon treatment with a reducing agent, which resulted in selective degradation of the polymers in small segments. In vitro cytotoxicity studies, such as MTT and CCK-8 assays, revealed the superior biocompatibility of these new polymers even at high concentrations of 500 μg/mL. We anticipate that these novel redox-degradable and highly biocompatible polyglycerols will find applications in a variety of emerging biomedical fields.
AB - Polymers that are biocompatible and degrade in response to stimuli are highly desirable as smart drug-delivery carriers. We report the first novel redox-degradable hyperbranched polyglycerols. A glycerol monomer containing a disulfide bond, i.e., 2-((2-(oxiran-2-ylmethoxy)ethyl)disulfanyl)ethan-1-ol (SSG), was designed and polymerized through anionic ring-opening multibranching polymerization to yield a series of redox-degradable hyperbranched polyglycerols (PSSGs) with controlled molecular weights (2000-11 000 g/mol) and relatively low molecular weight distributions (Mw/Mn < 1.15). In addition, copolymerization with a nondegradable glycerol (G) monomer provided P(G-co-SSG) copolymers, which contained an adjustable fraction of degradable moieties within their polyglycerol backbones. The polymerization was characterized using 1H and 13C NMR spectroscopy, GPC, and MALDI-ToF mass spectrometry. The copolymerization process was also evaluated using quantitative in situ 13C NMR kinetic measurements in bulk, which revealed that the reaction kinetics of G were faster than those of the SSG monomer, leading to a gradient during the copolymerization process. Furthermore, we explored the redox-responsive degradation of the polymers upon treatment with a reducing agent, which resulted in selective degradation of the polymers in small segments. In vitro cytotoxicity studies, such as MTT and CCK-8 assays, revealed the superior biocompatibility of these new polymers even at high concentrations of 500 μg/mL. We anticipate that these novel redox-degradable and highly biocompatible polyglycerols will find applications in a variety of emerging biomedical fields.
UR - http://www.scopus.com/inward/record.url?scp=84922611748&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84922611748&partnerID=8YFLogxK
U2 - 10.1021/ma502242v
DO - 10.1021/ma502242v
M3 - Article
AN - SCOPUS:84922611748
VL - 48
SP - 600
EP - 609
JO - Macromolecules
JF - Macromolecules
SN - 0024-9297
IS - 3
ER -