Regularizing Generative Adversarial Networks under Limited Data

Hung Yu Tseng, Lu Jiang, Ce Liu, Ming Hsuan Yang, Weilong Yang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

25 Citations (Scopus)

Abstract

Recent years have witnessed the rapid progress of generative adversarial networks (GANs). However, the success of the GAN models hinges on a large amount of training data. This work proposes a regularization approach for training robust GAN models on limited data. We theoretically show a connection between the regularized loss and an f-divergence called LeCam-divergence, which we find is more robust under limited training data. Extensive experiments on several benchmark datasets demonstrate that the proposed regularization scheme 1) improves the generalization performance and stabilizes the learning dynamics of GAN models under limited training data, and 2) complements the recent data augmentation methods. These properties facilitate training GAN models to achieve state-of-the-art performance when only limited training data of the ImageNet benchmark is available. The source code is available at https://github.com/google/lecam-gan.

Original languageEnglish
Title of host publicationProceedings - 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021
PublisherIEEE Computer Society
Pages7917-7927
Number of pages11
ISBN (Electronic)9781665445092
DOIs
Publication statusPublished - 2021
Event2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021 - Virtual, Online, United States
Duration: 2021 Jun 192021 Jun 25

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Conference

Conference2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021
Country/TerritoryUnited States
CityVirtual, Online
Period21/6/1921/6/25

Bibliographical note

Funding Information:
This work is supported in part by the NSF CAREER Grant #1149783.

Publisher Copyright:
© 2021 IEEE

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Regularizing Generative Adversarial Networks under Limited Data'. Together they form a unique fingerprint.

Cite this