Regulation of the Inevitable Water-Responsivity of Silk Fibroin Biopolymer by Polar Amino Acid Activation

Woojin Choi, Taesuk Jun, Milae Lee, Kyungtae Park, Moonhyun Choi, Sungwon Jung, Jae Kook Cha, Jae Sung Kwon, Youngho Jin, Sangmin Lee, Du Yeol Ryu, Jinkee Hong

Research output: Contribution to journalArticlepeer-review

Abstract

In nature, water is vital for maintaining homeostasis. Particularly, organisms (e.g., plant leaf, bird feather) exploit water fluidics for motions. Hydration-adaptive crystallization is the representative water-responsive actuation of biopolymers. This crystallization has inspired the development of intelligent human-robot interfaces. At the same time, it hinders the consistent adhesion of tissue adhesive. As hydration-adaptive crystallization is inevitable, the on-demand control of crystallization is desirable in the innovative biopolymeric biomedical systems. To this end, this study developed an amino acid-based technology to artificially up- or down-regulate the inevitable crystallization of silk fibroin. A case II diffusion model was constructed, and it revealed that the activity of polar amino acid is related to crystallization kinetics. Furthermore, the water dynamics study suggested that active amino acid stabilizes crystallization-triggering water molecules. As a proof-of-concept, we verified that a 30% increase in the activity of serine resulted in a 50% decrease in the crystallization rate. Furthermore, the active amino acid-based suppression of hydration-adaptive crystallization enabled the silk fibroin to keep its robust adhesion (approximately 160 kJ m-3) by reducing the water-induced loss of adhesive force. The proposed silk fibroin was demonstrated as a stable tissue adhesive applied on ex vivo porcine mandible tissue. This amino acid-based regulation of hydration-adaptive crystallization will pioneer next-generation biopolymer-based healthcare.

Original languageEnglish
Pages (from-to)17274-17288
Number of pages15
JournalACS Nano
Volume16
Issue number10
DOIs
Publication statusPublished - 2022 Oct 25

Bibliographical note

Funding Information:
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2017R1E1A1A01074343), the Korea Medical Device Development Fund grant funded by the Korea government (the Ministry of Science and ICT, the Ministry of Trade, Industry and Energy, the Ministry of Health & Welfare, Republic of Korea, the Ministry of Food and Drug Safety) (Project Number: 202011D04), the Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Ministry of Science & ICT (2019M3A9H1103786), and the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT)(No. 2021R1A4A3030268).

Publisher Copyright:
© 2022 American Chemical Society. All rights reserved.

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Engineering(all)
  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Regulation of the Inevitable Water-Responsivity of Silk Fibroin Biopolymer by Polar Amino Acid Activation'. Together they form a unique fingerprint.

Cite this