Relating geostationary satellite measurements of aerosol optical depth (AOD) over East Asia to fine particulate matter (PM2.5): insights from the KORUS-AQ aircraft campaign and GEOS-Chem model simulations

Shixian Zhai, Daniel J. Jacob, Jared F. Brewer, Ke Li, Jonathan M. Moch, Jhoon Kim, Seoyoung Lee, Hyunkwang Lim, Hyun Chul Lee, Su Keun Kuk, Rokjin J. Park, Jaein I. Jeong, Xuan Wang, Pengfei Liu, Gan Luo, Fangqun Yu, Jun Meng, Randall V. Martin, Katherine R. Travis, Johnathan W. HairBruce E. Anderson, Jack E. Dibb, Jose L. Jimenez, Pedro Campuzano-Jost, Benjamin A. Nault, Jung Hun Woo, Younha Kim, Qiang Zhang, Hong Liao

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Geostationary satellite measurements of aerosol optical depth (AOD) over East Asia from the Geostationary Ocean Color Imager (GOCI) and Advanced Himawari Imager (AHI) instruments can augment surface monitoring of fine particulate matter (PM2.5) air quality, but this requires better understanding of the AOD-PM2.5 relationship. Here we use the GEOS-Chem chemical transport model to analyze the critical variables determining the AOD-PM2.5 relationship over East Asia by simulation of observations from satellite, aircraft, and ground-based datasets. This includes the detailed vertical aerosol profiling over South Korea from the KORUS-AQ aircraft campaign (May-June 2016) with concurrent ground-based PM2.5 composition, PM10, and AERONET AOD measurements. The KORUS-AQ data show that 550 nm AOD is mainly contributed by sulfate-nitrate-ammonium (SNA) and organic aerosols in the planetary boundary layer (PBL), despite large dust concentrations in the free troposphere, reflecting the optically effective size and high hygroscopicity of the PBL aerosols. We updated SNA and organic aerosol size distributions in GEOS-Chem to represent aerosol optical properties over East Asia by using in situ measurements of particle size distributions from KORUS-AQ. We find that SNA and organic aerosols over East Asia have larger size (number median radius of 0.11 μm with geometric standard deviation of 1.4) and 20 % larger mass extinction efficiency as compared to aerosols over North America (default setting in GEOS-Chem). Although GEOS-Chem is successful in reproducing the KORUS-AQ vertical profiles of aerosol mass, its ability to link AOD to PM2.5 is limited by under-accounting of coarse PM and by a large overestimate of nighttime PM2.5 nitrate. The GOCI-AHI AOD data over East Asia in different seasons show agreement with AERONET AODs and a spatial distribution consistent with surface PM2.5 network data. The AOD observations over North China show a summer maximum and winter minimum, opposite in phase to surface PM2.5. This is due to low PBL depths compounded by high residential coal emissions in winter and high relative humidity (RH) in summer. Seasonality of AOD and PM2.5 over South Korea is much weaker, reflecting weaker variation in PBL depth and lack of residential coal emissions.

Original languageEnglish
Pages (from-to)16775-16791
Number of pages17
JournalAtmospheric Chemistry and Physics
Volume21
Issue number22
DOIs
Publication statusPublished - 2021 Nov 18

Bibliographical note

Funding Information:
vanced Institute of Technology and the Harvard–NUIST Joint Laboratory for Air Quality and Climate (JLAQC). Jose L. Jimenez, Pedro Campuzano-Jost, and Benjamin A. Nault were supported by NASA (grant nos. NNX15AT96G and 80NSSC19K0124).

Funding Information:
This work was funded by the Samsung Advanced Institute of Technology and the Harvard-NUIST Joint Laboratory for Air Quality and Climate (JLAQC). Jose L. Jimenez, Pedro Campuzano-Jost, and Benjamin A. Nault were supported by NASA (grant nos. NNX15AT96G and 80NSSC19K0124).

Funding Information:
Financial support. This work was funded by the Samsung Ad-

Publisher Copyright:
© 2021 Shixian Zhai et al.

All Science Journal Classification (ASJC) codes

  • Atmospheric Science

Fingerprint

Dive into the research topics of 'Relating geostationary satellite measurements of aerosol optical depth (AOD) over East Asia to fine particulate matter (PM2.5): insights from the KORUS-AQ aircraft campaign and GEOS-Chem model simulations'. Together they form a unique fingerprint.

Cite this