Removal of nitrogen and phosphorus from effluent of a secondary wastewater treatment plant using a pond-marsh wetland system

Dong Gill Kim, Joohyun Park, Dowon Lee, Hojeong Kang

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

A constructed wetland composed of a pond- and a marsh-type wetland was employed to remove nitrogen (N) and phosphorus (P) from effluent of a secondary wastewater treatment plant in Korea. Nutrient concentrations in inflow water and outflow water were monitored around 50 times over a 1-year period. To simulate N and P dynamics in a pond- and a marsh-type wetland, mesocosm experiments were conducted. In the field monitoring, ammonium (NH 4 + ) decreased from 4.6 to 1.7 mg L-1, nitrate (NO 3 - ) decreased from 6.8 to 5.3 mg L-1, total N (TN) decreased from 14.6 to 10.1 mg L-1, and total P (TP) decreased from 1.6 to 1.1 mg L-1. Average removal efficiencies (loading basis) for NO 3 -, NH 4 +, TN, and TP were over 70%. Of the environmental variables we considered, water temperature exhibited significant positive correlations with removal rates for the nutrients except for NH 4 + . Results from mesocosm experiments indicated that NH 4 + was removed similarly in both pond- and marsh-type mesocosms within 1 day, but that NO 3 - was removed more efficiently in marsh-type mesocosms, which required a longer retention time (2-4 days). Phosphorus was significantly removed similarly in both pond- and marsh-type mesocosms within 1 day. Based on the results, we infer that wetland system composed of a pond- and a marsh-type wetland consecutively can enhance nutrient removal efficiency compared with mono-type wetland. The reason is that removal of NH 4 + and P can be maximized in the pond while NO 3 - requiring longer retention time can be removed through both pond and marsh. Overall results of this study suggest that a constructed wetland composed of a pond- and a marsh-type wetland is highly effective for the removal of N and P from effluents of a secondary wastewater treatment plant.

Original languageEnglish
Pages (from-to)37-47
Number of pages11
JournalWater, Air, and Soil Pollution
Volume214
Issue number1-4
DOIs
Publication statusPublished - 2011 Jan

All Science Journal Classification (ASJC) codes

  • Environmental Engineering
  • Environmental Chemistry
  • Ecological Modelling
  • Water Science and Technology
  • Pollution

Fingerprint Dive into the research topics of 'Removal of nitrogen and phosphorus from effluent of a secondary wastewater treatment plant using a pond-marsh wetland system'. Together they form a unique fingerprint.

  • Cite this