Removal of sulfamethoxazole, ibuprofen and nitrobenzene by UV and UV/chlorine processes

A comparative evaluation of 275 nm LED-UV and 254 nm LP-UV

Minhwan Kwon, Yeojoon Yoon, Seonbaek Kim, Youmi Jung, Tae Mun Hwang, Joonwun Kang

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

The aim of this study is to evaluate the micropollutant removal capacity of a 275 nm light-emitting diode (LED)-UV/chlorine system. The sulfamethoxazole, ibuprofen, and nitrobenzene removal efficiencies of this system were compared with those of a conventional 254 nm low-pressure (LP)-UV system as a function of the UV dose. In a direct photolysis system, the photon reactivity of sulfamethoxazole is higher than that of nitrobenzene and ibuprofen at both wavelengths. The molar absorption coefficients and quantum yields of each micropollutant were as follows: sulfamethoxazole (εSMX, 275 nm protonated = 17,527 M−1 cm−1, ΦSMX, 275 nm protonated = 0.239, εSMX, 275 nm deprotonated = 8430 M−1 cm−1, and ΦSMX, 275 nm deprotonated = 0.026), nitrobenzene (εNB, 275 nm = 7176 M−1 cm−1 and ΦNB, 275 nm = 0.057), and ibuprofen (εNB, 275 nm = 200 M−1 cm−1 and ΦIBF, 275 nm = 0.067). The photon reactivity of chlorine species, i.e., HOCl and OCl-, were determined at 275 nm (εHOCl, 275 nm = 28 M−1 cm−1, ΦHOCl, 275 nm = 1.97, εOCl−, 275 nm = 245 M−1 cm−1, and ΦOCl−, 275 nm = 0.8), which indicate that the decomposition rate of OCl is higher and that of HOCl is lower by 275 nm photolysis than that by 254 nm photolysis (εHOCl, 254 nm = 60 M−1 cm−1, ΦHOCl, 254 nm = 1.46, εOCl−, 254 nm = 58 M−1 cm−1, and ΦOCl−, 254 nm = 1.11). In the UV/chlorine system, the removal rates of ibuprofen and nitrobenzene were increased by the formation of [rad]OH and reactive chlorine species. The 275-nm LED-UV/chlorine system has higher radical yields at pH 7 and 8 than the 254 nm LP-UV/chlorine system.

Original languageEnglish
Pages (from-to)1351-1357
Number of pages7
JournalScience of the Total Environment
Volume637-638
DOIs
Publication statusPublished - 2018 Oct 1

Fingerprint

Sulfamethoxazole
Nitrobenzene
Ibuprofen
Chlorine
Light emitting diodes
low pressure
chlorine
Photolysis
photolysis
Photons
low pressure system
absorption coefficient
Quantum yield
nitrobenzene
removal
evaluation
decomposition
wavelength
Decomposition
Wavelength

All Science Journal Classification (ASJC) codes

  • Environmental Engineering
  • Environmental Chemistry
  • Waste Management and Disposal
  • Pollution

Cite this

@article{4415b491dfaf4fcc86cc4986673d136c,
title = "Removal of sulfamethoxazole, ibuprofen and nitrobenzene by UV and UV/chlorine processes: A comparative evaluation of 275 nm LED-UV and 254 nm LP-UV",
abstract = "The aim of this study is to evaluate the micropollutant removal capacity of a 275 nm light-emitting diode (LED)-UV/chlorine system. The sulfamethoxazole, ibuprofen, and nitrobenzene removal efficiencies of this system were compared with those of a conventional 254 nm low-pressure (LP)-UV system as a function of the UV dose. In a direct photolysis system, the photon reactivity of sulfamethoxazole is higher than that of nitrobenzene and ibuprofen at both wavelengths. The molar absorption coefficients and quantum yields of each micropollutant were as follows: sulfamethoxazole (εSMX, 275 nm protonated = 17,527 M−1 cm−1, ΦSMX, 275 nm protonated = 0.239, εSMX, 275 nm deprotonated = 8430 M−1 cm−1, and ΦSMX, 275 nm deprotonated = 0.026), nitrobenzene (εNB, 275 nm = 7176 M−1 cm−1 and ΦNB, 275 nm = 0.057), and ibuprofen (εNB, 275 nm = 200 M−1 cm−1 and ΦIBF, 275 nm = 0.067). The photon reactivity of chlorine species, i.e., HOCl and OCl-, were determined at 275 nm (εHOCl, 275 nm = 28 M−1 cm−1, ΦHOCl, 275 nm = 1.97, εOCl−, 275 nm = 245 M−1 cm−1, and ΦOCl−, 275 nm = 0.8), which indicate that the decomposition rate of OCl− is higher and that of HOCl is lower by 275 nm photolysis than that by 254 nm photolysis (εHOCl, 254 nm = 60 M−1 cm−1, ΦHOCl, 254 nm = 1.46, εOCl−, 254 nm = 58 M−1 cm−1, and ΦOCl−, 254 nm = 1.11). In the UV/chlorine system, the removal rates of ibuprofen and nitrobenzene were increased by the formation of [rad]OH and reactive chlorine species. The 275-nm LED-UV/chlorine system has higher radical yields at pH 7 and 8 than the 254 nm LP-UV/chlorine system.",
author = "Minhwan Kwon and Yeojoon Yoon and Seonbaek Kim and Youmi Jung and Hwang, {Tae Mun} and Joonwun Kang",
year = "2018",
month = "10",
day = "1",
doi = "10.1016/j.scitotenv.2018.05.080",
language = "English",
volume = "637-638",
pages = "1351--1357",
journal = "Science of the Total Environment",
issn = "0048-9697",
publisher = "Elsevier",

}

Removal of sulfamethoxazole, ibuprofen and nitrobenzene by UV and UV/chlorine processes : A comparative evaluation of 275 nm LED-UV and 254 nm LP-UV. / Kwon, Minhwan; Yoon, Yeojoon; Kim, Seonbaek; Jung, Youmi; Hwang, Tae Mun; Kang, Joonwun.

In: Science of the Total Environment, Vol. 637-638, 01.10.2018, p. 1351-1357.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Removal of sulfamethoxazole, ibuprofen and nitrobenzene by UV and UV/chlorine processes

T2 - A comparative evaluation of 275 nm LED-UV and 254 nm LP-UV

AU - Kwon, Minhwan

AU - Yoon, Yeojoon

AU - Kim, Seonbaek

AU - Jung, Youmi

AU - Hwang, Tae Mun

AU - Kang, Joonwun

PY - 2018/10/1

Y1 - 2018/10/1

N2 - The aim of this study is to evaluate the micropollutant removal capacity of a 275 nm light-emitting diode (LED)-UV/chlorine system. The sulfamethoxazole, ibuprofen, and nitrobenzene removal efficiencies of this system were compared with those of a conventional 254 nm low-pressure (LP)-UV system as a function of the UV dose. In a direct photolysis system, the photon reactivity of sulfamethoxazole is higher than that of nitrobenzene and ibuprofen at both wavelengths. The molar absorption coefficients and quantum yields of each micropollutant were as follows: sulfamethoxazole (εSMX, 275 nm protonated = 17,527 M−1 cm−1, ΦSMX, 275 nm protonated = 0.239, εSMX, 275 nm deprotonated = 8430 M−1 cm−1, and ΦSMX, 275 nm deprotonated = 0.026), nitrobenzene (εNB, 275 nm = 7176 M−1 cm−1 and ΦNB, 275 nm = 0.057), and ibuprofen (εNB, 275 nm = 200 M−1 cm−1 and ΦIBF, 275 nm = 0.067). The photon reactivity of chlorine species, i.e., HOCl and OCl-, were determined at 275 nm (εHOCl, 275 nm = 28 M−1 cm−1, ΦHOCl, 275 nm = 1.97, εOCl−, 275 nm = 245 M−1 cm−1, and ΦOCl−, 275 nm = 0.8), which indicate that the decomposition rate of OCl− is higher and that of HOCl is lower by 275 nm photolysis than that by 254 nm photolysis (εHOCl, 254 nm = 60 M−1 cm−1, ΦHOCl, 254 nm = 1.46, εOCl−, 254 nm = 58 M−1 cm−1, and ΦOCl−, 254 nm = 1.11). In the UV/chlorine system, the removal rates of ibuprofen and nitrobenzene were increased by the formation of [rad]OH and reactive chlorine species. The 275-nm LED-UV/chlorine system has higher radical yields at pH 7 and 8 than the 254 nm LP-UV/chlorine system.

AB - The aim of this study is to evaluate the micropollutant removal capacity of a 275 nm light-emitting diode (LED)-UV/chlorine system. The sulfamethoxazole, ibuprofen, and nitrobenzene removal efficiencies of this system were compared with those of a conventional 254 nm low-pressure (LP)-UV system as a function of the UV dose. In a direct photolysis system, the photon reactivity of sulfamethoxazole is higher than that of nitrobenzene and ibuprofen at both wavelengths. The molar absorption coefficients and quantum yields of each micropollutant were as follows: sulfamethoxazole (εSMX, 275 nm protonated = 17,527 M−1 cm−1, ΦSMX, 275 nm protonated = 0.239, εSMX, 275 nm deprotonated = 8430 M−1 cm−1, and ΦSMX, 275 nm deprotonated = 0.026), nitrobenzene (εNB, 275 nm = 7176 M−1 cm−1 and ΦNB, 275 nm = 0.057), and ibuprofen (εNB, 275 nm = 200 M−1 cm−1 and ΦIBF, 275 nm = 0.067). The photon reactivity of chlorine species, i.e., HOCl and OCl-, were determined at 275 nm (εHOCl, 275 nm = 28 M−1 cm−1, ΦHOCl, 275 nm = 1.97, εOCl−, 275 nm = 245 M−1 cm−1, and ΦOCl−, 275 nm = 0.8), which indicate that the decomposition rate of OCl− is higher and that of HOCl is lower by 275 nm photolysis than that by 254 nm photolysis (εHOCl, 254 nm = 60 M−1 cm−1, ΦHOCl, 254 nm = 1.46, εOCl−, 254 nm = 58 M−1 cm−1, and ΦOCl−, 254 nm = 1.11). In the UV/chlorine system, the removal rates of ibuprofen and nitrobenzene were increased by the formation of [rad]OH and reactive chlorine species. The 275-nm LED-UV/chlorine system has higher radical yields at pH 7 and 8 than the 254 nm LP-UV/chlorine system.

UR - http://www.scopus.com/inward/record.url?scp=85047067663&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85047067663&partnerID=8YFLogxK

U2 - 10.1016/j.scitotenv.2018.05.080

DO - 10.1016/j.scitotenv.2018.05.080

M3 - Article

VL - 637-638

SP - 1351

EP - 1357

JO - Science of the Total Environment

JF - Science of the Total Environment

SN - 0048-9697

ER -